Résultats de la recherche

362 résultats correspondent à AASQA
Lundi 7 avril 2014
Rapport
Amélioration de la qualité des étalonnages
Les analyseurs de gaz utilisés par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) dans les stations de mesure sont étalonnés au point zéro et au point échelle avec des gaz d’étalonnage, ce qui permet de garantir la justesse des mesures de pollution atmosphérique. Le LCSQA/LNE raccorde périodiquement les gaz d’étalonnage au point échelle des AASQA par comparaisons analytiques des concentrations à un étalon de référence en utilisant un moyen analytique. La qualité du moyen analytique utilisé est donc un élément « clé » pour réaliser ces raccordements, car il peut induire un biais ou des incertitudes élevées, s’il ne présente pas des performances métrologiques suffisantes.Dans le cas du polluant NO2, l'analyse actuelle est basée sur une méthode indirecte : en effet, le composé NO2 est d'abord converti en NO par l’intermédiaire d’un four de conversion contenant du molybdène, avant d'être analysé par chimiluminescence en présence d’ozone. Cette technique pose non seulement un problème de traçabilité du fait de son fonctionnement, mais peut également engendrer une erreur liée au rendement de conversion du four et à sa non-sélectivité, car d’autres molécules peuvent être converties et donc assimilées par erreur à du NO2. Sur cette thématique, le premier objectif de 2013 a consisté à effectuer une étude de faisabilité portant sur la réalisation d’étalonnages pour NO et NO2 avec le spectromètre DUAL QC-TILDAS-210 et lacomparaison entre les résultats obtenus par méthode optique et par chimiluminescence. Cette étude montre que pour NO et NO2, les résultats d’étalonnage obtenus par méthode optique avec le spectromètre DUAL QC-TILDAS-210 ne sont pas significativement différents de ceux obtenus par chimiluminescence, et que les incertitudes élargies sont du même ordre de grandeur. Concernant l’analyse du NO2, l’avantage d’utiliser une méthode optique permet de s’affranchir de possibles biais analytiques, puisque cette méthode permet d’analyser directement le NO2 sans mettre en oeuvre un convertisseur au molybdène susceptible de convertir d’autres molécules comme dans la méthode par chimiluminescence. Néanmoins, la technique optique utilisée dans cette étude met en oeuvre une cellule d’absorption multi-passages ayant un grand volume (5 litres), ce qui peut induire des problèmes d’adsorption/désorption, des temps de stabilisation élevés… Le second objectif de 2013 a donc porté sur la réalisation d’une étude bibliographique des autres méthodes optiques pour la mesure du NO2 qui fonctionnent notamment avec des cavités optiques ayant des volumes plus faibles en vu de remplacer les appareils basés sur la chimiluminescence utilisés actuellement par le LCSQA/LNE pour étalonner les mélanges gazeux des AASQA. Plusieurs appareils du commerce basés sur des techniques optiques sont disponibles sur le marché, à savoir l’analyseur optique QCL (Aerodyne Research), l’analyseur optique OA-ICOS (Los Gatos) et  l’analyseur optique CAPS (Aerodyne Research) ou CAPS (Environnement SA). L’étude technique montre que les récentes évolutions des techniques analytiques basées sur des mesures optiques permettent d’effectuer des mesures directes du NO2 avec des sensibilités très intéressantes et que les appareils proposés sur le marché semblent avoir de bonnes performances métrologiques.Néanmoins, ils ne nous permettent pas de maîtriser totalement les paramètres spectroscopiques nécessaires à une mesure absolue d’autant plus que leurs coûts sont relativement élevés. Le LCSQA/LNE a acquis une solide expérience dans le cadre d’un projet européen (Metrology for chemical pollutants in air) dont l’objectif était de développer une méthodologie pour réaliser des mesures absolues de concentration par méthode optique. Fort de ces compétences acquises et d’une collaboration avec le LNE-CNAM, il nous a semblé judicieux de développer un appareil spécifique pour la mesure du NO2 dont nous pourrons maîtriser l’ensemble des paramètres à un coût équivalent à celui des appareils actuellement commercialisés. Suite aux échanges techniques engagés avec l’Université de Grenoble (Laboratoire Interdisciplinaire de Physique), nous avons orienté notre choix vers une méthode optique « dérivée » de la méthode CRDS (Cavity Rings Down Spectroscopy) classique. Cette méthode appelée IBB-CEAS (Incoherent Broadband - Cavity Enhanced Absorption Spectroscopy) est relativement simple à mettre en oeuvre et présente une grande compacité, robustesse, sensibilité à un coût relativement faible. Elle permet également de calculer la concentration d’après les données spectroscopiques connues et d’obtenir des mesures absolues : en conséquence, il n’est pas nécessaire d’étalonner le système de mesure. Les différents éléments constitutifs du système ont été commandés courant novembre 2013 et devraient être réceptionnés au cours du 1er trimestre 2014. Le montage du système sera ensuite effectué au cours de l’année 2014 en assemblant les différents éléments et des premiers essais de caractérisation seront effectués.Concernant les gaz de zéro, ces derniers prennent de plus en plus d’importance dans le domaine de la qualité de l'air, notamment dans la mesure où, pour certains polluants les teneurs en air ambiant extérieur sont de plus en plus faibles, induisant un besoin de maîtrise et de qualité des gaz mis en oeuvre pour le réglage du zéro des analyseurs. Cela s’est d’ailleurs traduit par des spécifications techniques sur les gaz de zéro particulièrement strictes dans les normes EN récemment sorties fin 2012 / début 2013. Pour déterminer les concentrations de NO, NO2, SO2 et CO dans les gaz de zéro, le LCSQA/LNE a développé une méthode d’analyse mettant en oeuvre un spectromètre de type « Tunable Infrared Laser Absorption » de marque DUAL QC-TILDAS-210 (Aerodyne Research). La méthode étant opérationnelle, le LCSQA/LNE contrôle les gaz de zéro en bouteille des niveaux 2. Cependant, ce type de transfert n’est pas forcément celui qui est utilisé en station par un niveau 3, qui recherche une solution plus pragmatique et polyvalente telle que celles décrites dans la norme NF X43-055 (Air ambiant - Métrologie appliquée au mesurage des polluants atmosphériques gazeux - Prélèvement d'air ambiant et mise en oeuvre des gaz d'étalonnage - 2007). Ce sont par exemple des épurateurs chimiques en cartouches ou la génération de gaz de zéro intégrée aux dispositifs d’étalonnage portables. Des tests ont ainsi été menés en 2013 par le LCSQA/MD sur des systèmes de génération d’air de zéro utilisés sur le terrain en AASQA, principalement sur des dispositifs intégrés aux étalons de transfert tels que les diluteurs / générateurs portables. L’objectif a été de vérifier leurs caractéristiques dans le cadre d’un fonctionnement usuel et le respect par rapport aux spécifications techniques des normes CEN, par rapport à la chaîne de vérification mise en place par le LCSQA/LNE et selon uneméthodologie spécifique. Des systèmes portables dédiés à la génération de gaz de zéro ont été identifiés (modèles 751 et 751H de la marque américaine API, distribuée en France par le distributeur Envicontrol). Ils feront l’objet de tests dès leur commercialisation prévue pour 2014, en parallèle avec les dispositifs « faits maison » (cartouches d’épurateurs chimiques spécifiques mis en série).
Mardi 1 mars 2016
Rapport
Contrôle qualité de la chaîne nationale d’étalonnage
Résumé : L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQA et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, NO2, CO et SO2 : Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol, NO2 de l’ordre de 200 nmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. Ces mélanges gazeux ont été titrés par le LCSQA puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les a titrés de nouveau. En 2015, 3 comparaisons interlaboratoires ont été réalisées : Avec les réseaux de mesure AIR LR, ATMO NPDC, ATMO PC, AIRPARIF et AIR PL de mars à mai 2015, Avec les réseaux de mesure Observatoire Réunionnais de l’Air, ATMO Picardie, Qualit’air Corse et ORA de Guyane d’avril à août 2015, Avec les réseaux de mesure AIR Lorraine, Madininair, AIRBREIZH et LIG’Air de septembre à décembre 2015. En règle générale, les AASQA communiquent au LCSQA les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LCSQA, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LCSQA et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes. Globalement, en 2013, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LCSQA et les niveaux 3 restent dans ces intervalles qui sont les suivants : ±7% avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; ±6% avant et après réglage pour des concentrations en NO/NOx et en NO2 voisines de 200 nmol/mol ; ±6% avant réglage et ±4% après réglage pour des concentrations en CO voisines de 9 µmol/mol. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx, de NO2 et de CO aux étalons de référence fonctionne correctement. Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans lesniveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 12 niveaux 3 en 2015, à savoir : Ora Réunion, ATMO Poitou-Charentes, AIR Languedoc-Roussillon, AIRAQ, AIR Rhône-Alpes, ATMO Franche Comté, AIR Normand, ATMO Picardie, QUALITAIR CORSE, AIR Lorraine, ATMOSF'AIR Bourgogne et ORA Guyane. Les résultats obtenus en 2015 montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 12 réseaux de mesure et celles déterminées par le LNE sont de ±5%. De plus, les écarts relatifs observés entre les valeurs des AASQA et du LNE sont aléatoirement répartis de part et d’autre de zéro.
Vendredi 10 novembre 2017
Rapport
Maintien et amélioration des chaînes nationales d'étalonnage - analyseurs automatiques de PM
Nouveau rapport LCSQA : Maintien et amélioration des chaînes nationales d'étalonnage - analyseurs automatiques de PM Sous l'impulsion du ministère en charge de l'environnement, la "chaîne nationale d'étalonnage" a été conçue et mise en place afin de garantir la traçabilité et la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l'air pour les principaux polluants atmosphériques gazeux réglementés. Dans le cas des particules, en l’absence d’étalons primaires nationaux, il s’avère impossible d’effectuer comme pour les gaz un raccordement direct des analyseurs automatiques en station de mesure aux étalons de référence nationaux. Les objectifs de la mise à disposition par Mines Douai de moyens de contrôle de mesure de particules en suspension dans l’air ambiant par voie automatique sont les suivants : Ÿ fournir aux AASQA un moyen de contrôle raccordé à une chaîne d’étalonnage, leur permettant de vérifier, si possible directement sur le site, le bon fonctionnement de leurs analyseurs automatiques (microbalances à variation de fréquence, jauges radiométriques), Ÿ vérifier la conformité du débit de prélèvement des appareils par le biais d'une procédure commune et, donc de permettre une comparaison de l'ensemble des résultats de mesures au niveau national (les éventuels problèmes liés aux caractéristiques des sites de prélèvements ne sont pas pris en compte dans ces travaux), Ÿ tester la linéarité des appareils ou la réponse à un autre niveau de la gamme de mesure d’appareillage dans des conditions respectant les servitudes d’utilisation préconisées par le fabricant, à savoir dans une gamme de valeurs correspondant à l’empoussièrement usuel observé sur un site de mesure. En 2016, la mise à disposition des cales étalon pour vérification sur site du bon fonctionnement des analyseurs automatiques de PM sur site met en évidence le comportement correct de l’ensemble des appareils contrôlés. En 2016, 16 mises à disposition ont été effectuées, pour un total de 86 appareils représentant un peu plus de 10% du parc d’analyseurs automatiques de PM actuellement opérationnels en  AASQA. Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-MD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM et pour les radiomètres bêta MP101M et BAM 1020 concernant les paramètres débit de prélèvement, respect de constante d’étalonnage et linéarité sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA dans le cadre de la coordination technique du Dispositif National de Surveillance de la Qualité de l’Air et sont en phase avec la parution prochaine de la norme EN 16450 « Air ambiant - Systèmes automatisés de mesurage de la concentration de matière particulaire (PM10; PM2,5) ».
Mardi 9 mai 2017
Rapport
Travaux d’instrumentation 2016
Ce rapport résume les travaux d’instrumentation et d’assistance technique aux AASQA réalisés en 2016 dans le cadre du LCSQA. Ces travaux concernent la CSIA (Commission de suivi « informatique des AASQA »° et les GT « rénovation » et « constituants ». Ce document aborde principalement les aspects liés aux postes centraux et à la remontée des données pour le niveau national, le suivi de l’outil « répétabilité » et la question des microcapteurs (retours des JTA 2016 et système AirSensEur).
Lundi 11 mars 2019
Rapport
Protocole harmonisé pour la campagne nationale exploratoire de surveillance des pesticides dans l’air ambiant
La mise en place d’une surveillance des résidus de pesticides dans l’air au niveau national est une priorité définie dans le cadre du plan d’action gouvernemental sur les produits phytopharmaceutiques et du plan national de réduction des émissions de polluants atmosphériques (PREPA) 2017-2021. A ce titre, l’ANSES a été saisie dès septembre 2014 pour proposer une liste de substances méritant d’être prioritairement surveillées ainsi que de faire des recommandations en matière de stratégie de surveillance pour évaluer l’exposition de la population. La rédaction du protocole harmonisé de surveillance sur l’ensemble du territoire national a été confiée à l’INERIS en tant que membre du LCSQA dans le cadre d’un financement de l’Agence Française de la Biodiversité (AFB) au sein du plan Ecophyto. Dans cet objectif, des travaux préliminaires ont été menés en 2017 par l’INERIS, dans le cadre de ses travaux pour le LCSQA, pour répondre aux recommandations de l’Anses. Ils comprenaient : •           la réalisation de campagnes métrologiques in situ en lien avec deux associations agréées de surveillance de la qualité de l'air (AASQA), Atmo Grand Est et Air PACA, afin d’arrêter les prescriptions métrologiques du prélèvement des échantillons jusqu’à leur analyse, •           la définition de la stratégie d’échantillonnage spatio-temporelle du protocole harmonisé, •           la liste des métadonnées à renseigner lors des prélèvements et de l’analyse, •           la réalisation de tests de performance de piégeage des dispositifs mis en œuvre vis-à-vis de certaines substances recherchées lors des campagnes métrologiques in situ. Ces tests font l’objet d’un rapport distinct (rapport LCSQA/INERIS DRC-18-152887-07108A).   Les principaux éléments du protocole harmonisé précisent les points suivants : •           un échantillonnage hebdomadaire sur préleveur Partisol équipé d’une coupure granulométrique PM10, •           une configuration de piégeage sur filtre et mousse PUF, •           la sous-traitance analytique des échantillons confiée à un seul laboratoire, •           une fréquence d’échantillonnage répartie sur l’année, variant de 1/mois à 1/semaine en fonction des traitements et du profil agricole du site considéré, •           les critères de sélection des sites de mesures répartis sur le territoire selon la production agricole (grande culture, viticulture, arboriculture, maraîchage, élevage) et les situations d’exposition (sites urbains/péri-urbains et sites ruraux) •           la liste des métadonnées à renseigner lors des prélèvements et de l’analyse, lors de la description des sites de mesures et des paramètres météorologiques.
Mardi 16 septembre 2014
Rapport
Intercomparaisons des stations de mesures : Intercomparaison des moyens mobiles nationaux (Besançon 2013)
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en termes d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air sont tenues de participer aux essais d'intercomparaison destinées aux organismes agréés de surveillance de la qualité de l’air mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 9 de l’arrêté du 21 octobre 2010). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un essai d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2013 en collaboration avec ATMO Franche Comté. Il a réuni 10 participants (8 AASQA, le LCSQA/INERIS et 1 partenaire étranger) et entités de mesures, constituant un parc de 59 analyseurs de NOx, O3, CO et SO2. Durant cette intercomparaison, le système de dopage permettant une distribution homogène des gaz sur 4 directions a été mis en oeuvre, dans l’objectif de respecter des temps de résidence inférieurs à 3 secondes pour les oxydes d’azote et l’ozone. Quelques erreurs de manipulation mineures ont été identifiés en cours d’exercice, sans répercutions sur le déroulement de l’exercice. Contrairement aux années précédentes, la circulation des étalons aveugles n’a pas comporté de « séance de rattrapage » lorsque les écarts des participants excédaient les 4 % tolérés. Pour rappel, l’exercice de circulation a pour seuls objectifs de vérifier la cohérence des étalons de transferts et d’expliquer a posteriori les éventuels décalages observés durant les séquences de dopage. Les écarts présentés par les participants étaient définitifs et non corrigés tout au long des essais d’intercomparaison, avec une possibilité d’impacter directement le calcul d’incertitude mené sur l’ensemble du groupe de participant. Cette manière de procéder permet d’accéder à des incertitudes de mesures plus représentatives des conditions réelles de terrain. Lors de cette circulation de gaz pour étalonnage en aveugle, la majorité des écarts constatés était nettement inférieure à l’incertitude tolérée sur la mesure des analyseurs (4%). On constate que les écarts importants sont peu fréquents pour l’ensemble des polluants, y compris pour le SO2 qui présente habituellement un nombre d’écarts nettement supérieur aux autres polluants. Le décompte des écarts significatifs se limite, en fin de campagne pour un niveau de concentration d’étalonnage habituel, à 1 analyseur de SO2, aucun analyseur de CO, 1 analyseur de NO, sur les 59 analyseurs présents sur le site. Le dysfonctionnement d’un générateur d’ozone étalon en cours d’exercice n’a pas permis de comptabiliser les écarts des analyseurs d’ozone en fin de campagne. L’application des tests statistiques de Cochran et Grubbs (norme NF ISO 5725-2) n’a éliminé aucune donnée quart-horaire sur un total de plus de 5200 mesures tous polluants confondus. L’avis d’expert n’a pas été utilisé pour écarter certaines données du calcul statistique. Les intervalles de confiance de reproductibilité (assimilables aux incertitudes de mesures) nettement inférieurs au seuil de 15 % ont été obtenus pour les polluants suivants : • CO : 6,1 %. • SO2 : 5,1 %. • O3 : 7,8 %. • NO : 3,7 %. • NO2 : 5,5 %. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et conduisant aux z-scores sont homogènes et très satisfaisants pour tous les participants. Une très large majorité des z-scores est comprise entre ±1. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en oeuvre des méthodes de mesures par les AASQA. Depuis plusieurs années, les résultats obtenus en termes d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national. Jusqu’à présent les essais d’intercomparaison des moyens de mesures mobiles intégraient l’ensemble de la chaîne de mesure sans prendre en compte l’influence de la tête de prélèvement et des lignes éventuellement associées. L’exercice 2013 a permis de renouveler le test du dispositif de dopage au niveau des têtes de prélèvement de chaque moyen mobile mis en oeuvre pour la première fois en 2012. Ce dispositif, basé sur un coiffage des têtes avec un sac inerte en « Tedlar », avait montré la possibilité de réactions photochimiques à l’intérieur des sacs. Le dispositif testé cette année a été équipé d’occultants afin d’éviter ce phénomène. En dépit de perturbations extérieures au site de la campagne qui ont fortement influencé les dopages en SO2 et O3 de cette partie de l‘intercomparaison, on aura pu constater pour l’ensemble des polluants la bonne cohérence des mesures traduisant l’influence négligeable des têtes de prélèvement dans la chaîne de mesure. Quelques écarts ont pu être expliqués par des lignes neuves non passivées. Le traitement statistique des données, identique à celui de l’exercice classique, n’a éliminé aucune mesure quart-horaire. Les intervalles de confiance expérimentaux calculés sont : • Pour le polluant CO : 3 %. • Pour le polluant SO2 : 9,2 %. • Pour le polluant O3 : 10,6 %. • Pour le polluant NO : 4,4 %. • pour le polluant NO2 : 5,1 %. On note une bonne cohérence des valeurs d’incertitude entre les exercices avec et sans coiffage des têtes de prélèvement pour les polluants CO, NO, et NO2. Pour ce qui est de l’ozone, le niveau d’incertitude est inférieur à celui de l’exercice 2012. Enfin, pour le SO2, le niveau d’incertitude expérimental (9,2%) est supérieur à celui de l’exercice classique (5,1%) et également à celui de l’exercice 2012 (5,8%). On rappellera cependant que, vues les fortes variations de concentrations mesurées, le calcul a été effectué sur peu de données, près de la moitié ayant été écartée du traitement statistique en raison des perturbations locales. De plus, on peut raisonnablement envisager que certains dispositifs de mesures (ligne + analyseur) ont pu être pollués et être toujours sous l’influence de l’épisode de perturbation nocturne. Compte tenu de ces résultats encourageants, de nouveaux tests seront donc programmés lors des prochains exercices d’intercomparaison de moyens mobiles afin de fiabiliser le dispositif et d’abandonner à court terme les dopages sous boitiers. La réalisation d’exercices réguliers d’intercomparaison doit permettre une amélioration globale du dispositif de surveillance national et notamment d’enrichir les procédures de maintenance périodique et de transfert. Dans cet objectif, une planification des exercices a été effectuée sur plusieurs années en intégrant les contraintes géographiques afin de permettre à chaque AASQA d’y participer périodiquement. Ce dispositif s’appuie désormais sur 5 sites identifiés grâce à la collaboration d’Atmo Franche-Comté, Atmo Poitou-Charentes, Airnormand, Air Rhône-Alpes et ORAMIP.
Vendredi 24 août 2012
Rapport
Bilan du parc de stations de mesure d'AASQA impliquées dans la modélisation
L’intégration croissante de l’outil de modélisation dans les dispositifs locaux etnationaux de surveillance et de gestion de la pollution atmosphérique, au travers denombreux produits issus de la recherche ou du secteur privé, nous impose uneréflexion sur la cohérence des besoins en modélisation et la répartition des mesuressur le territoire. Les Directives 2004/107/CE et 2008/50/CE encouragent d’ailleursl’usage des modèles en combinaison avec la mesure dans de nombreux cas de figure : rapportage des dépassements, optimisation de l’échantillonnage, évaluation des sources (naturelles, anthropiques) à différentes échelles de distance, prévision, justification des plans d’action, communication… Tout comme la mesure, lamodélisation est soumise à des objectifs de qualité de données, nécessitant unprocessus QA/QC dans les opérations de validation et de vérification. Cependant, iln’existe pas à l’heure actuelle de « technique de référence » pour la modélisation et les référentiels réglementaires orientent vers la combinaison « mesure –modélisation » pour l’évaluation de la qualité de l'air lorsque les niveaux de pollutionsont en dessous de seuil spécifique, soulignant ainsi la complémentarité de ces outilsdans ce cas de figure.Afin de répondre aux exigences et recommandations apportées par les directives et de leur évolution future, nous proposons un état des lieux du parc actuel de stationsd’AASQA impliquées dans les outils de modélisation. Le bilan réalisé sur l’année 2011 fait état d’une utilisation partielle par les plateformesnationale et régionales des 666 stations de mesures répertoriées. La plateforme nationale Prev’Air s’appuie sur 452 stations (67,8%) pour le calcul del’ozone et 288 stations (43,2%) pour le calcul des PM. Les plateformes régionales sedéclinent sur un nombre plus restreint de stations. Elles couvrent l’ensemble duterritoire métropolitain en s’articulant sur cinq outils majeurs :  AIRES,  ESMERALDA,  IRIS, PREV EST et PRE VALP,  SYRSO. Cet état des lieux a ensuite été comparé avec les besoins des modélisateurs français et les orientations des instances européennes (Directives, recommandations émises par le groupe d’expertise européen Forum for AIR quality MODElling – FAIRMODE –mis en place à la demande de la Commission Européenne).
Jeudi 1 octobre 2009
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS (1/2) : Guide pour l'utilisation du TEOM-FDMS (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)   Le présent guide a pour objet de fournir une aide aux utilisateurs des TEOM-FDMS dans les AASQA. Il a été construit à partir des expériences de chacune des AASQA, rencontrées au cours des journées d'échange sur les TEOM-FDMS ayant eu lieu en 2008 et 2009, et au cours desquelles l'ensemble des AASQA ont été consultées. Ce document est par définition évolutif, et toutes remarques, contributions, critiques… sont les bienvenues, et doivent être adressées directement au LCSQA (Aurélien Ustache, aurelien.ustache@ineris.fr) Nous observons, depuis 2007, une nette évolution dans la connaissance technique du fonctionnement du TEOM-FDMS, tant au niveau des solutions à apporter en cas de problème que des procédures à mettre en œuvre pour vérifier le fonctionnement de l'outil en routine : Concernant le premier point, le Tableau 1, présenté page 11, synthétise en grande partie l'état de notre connaissance. En particulier, une partie importante des premiers problèmes observés, qui sont notamment les fuites et les performances de la microbalance, sont désormais bien identifiés, et les solutions trouvées par chacun sont regroupées dans la partie 3 "Guide en cas de panne" de ce document. Ensuite, afin d'assurer la qualité des données produites par le TEOM-FDMS, il est essentiel de mettre en place un suivi du fonctionnement des appareils, basé sur la vérification à réception et périodique de différents critères de fonctionnement. L'ensemble des opérations QC/QA pouvant être mises en œuvre est présenté dans la quatrième partie de ce document "Contrôle qualité à réception et en routine". Le format est identique à celui des tableaux de "Fréquence requises pour l'étalonnage, les contrôles et la maintenance" des normes en vigueur pour la mesure des gaz "classiques" (cf tableau 6 de la norme EN14211 pour les NOx, par exemple). L'objectif est de créer un outil directement compatible et intégrable dans les projets de normes en cours d'élaboration au niveau du CEN.Nous recommandons de mettre en place le suivi de l'ensemble des paramètres du tableau  2. En particulier, nous recommandons très fortement de mettre en place le suivi des paramètres marqués en rouge et en gras dans ce tableau. Enfin, ce document a été élaboré  en tenant compte de l’expérience de chacune des  AASQA. Ce document a donc vocation à évoluer, afin d'être remis à jour. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension".
Mardi 17 mars 2015
Rapport
Surveillance des particules en suspension PM10 et PM2.5 par absorption de rayonnement bêta (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)     Ce rapport représente la mise à jour 2014 du guide de recommandations pour la surveillance des particules PM10 et PM2.5 dans l’air ambiant au moyen d’une jauge radiométrique par atténuation de rayonnement Bêta. Les jauges radiométriques homologuées actuellement sur le sol français pour la surveillance réglementaire des particules dans l’air ambiant sont : - La BAM 1020 de Met One Instruments, Inc. ; - La MP101M d’Environnement SA. Ce guide a été rédigé sur la base des versions précédentes des guides techniques qui étaient diffusés au travers des rapports LCSQA concernant la surveillance des PM par mesure d’atténuation Bêta (2011 à 2013), des documents des constructeurs (MetOne, Environnement SA) et des échanges avec le distributeur (Envicontrol) ainsi qu’à partir du retour d’expérience et des commentaires émis par les membres utilisateurs des AASQA sur une version provisoire du guide (journées techniques des AASQA, rencontres utilisateurs, Commission de Suivi « Mesures Automatiques », etc.). Il s’articule en trois parties : Partie 1 : Synthèse des commentaires reçus sur la version provisoire du guide Partie 2 : Mise à jour du guide pour le MP101M d’Environnement SA Partie 3 : Mise à jour du guide pour la BAM 1020 de Met One   Il est à noter que les informations contenues dans ce document pourront être amenées à évoluer ou à être mises à jour et qu’à termes elles aboutiront à un document de référence qui sera validé tout d’abord par les membres de la CS « Mesures automatiques » puis les membres du Comité de Pilotage de la Surveillance acteront de sa diffusion aux AASQA sous la forme d’une guide méthodologique pour sa mise en application courant 2015. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesures automatiques". En attendant, toutes les remarques peuvent être adressées directement par email à Sabine Crunaire (sabine.crunaire@mines-douai.fr), François Mathé (francois.mathe@mines-douai.fr) et Benoît Herbin (benoit.herbin@mines-douai.fr).
Lundi 12 mai 2014
Rapport
Surveillance du benzène
Conformément aux exigences de la Directive Européenne 2008/50/CE [1], certaines Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) réalisent des prélèvements de benzène par pompage sur tubes à l’aide de préleveurs depuis déjà quelques années, d’autres ont commencé à s’équiper au cours de l’année 2009. Dans ce contexte, l’INERIS accompagne les AASQA lors de l’équipement et la mise en oeuvre de préleveurs actifs en les conseillant sur l’application du guide de recommandations rédigé dans le cadre du GT benzène (mesure de débit, d’installation des tubes, précautions analytiques), assurant le lien entre constructeurs et utilisateurs, prospectant continuellement afin d’identifier de nouvelles techniques, suivant la construction de préleveurs « faits maison » au sein de certains réseaux, de plus en plus nombreux à se lancer dans cette voie. Au cours des discussions menées en 2010 dans le cadre de rencontres techniques (journée organisée par AIRPARIF) et de la commission de suivi benzène-HAP-métaux, il a été décidé de limiter le nombre de modèles de préleveurs développés à trois maximum en respectant les exigences de la Directive, du guide technique de recommandations [2] rédigé dans le cadre du GT benzène et de la norme NF EN 14662-1. À partir de 2014, un cahier des charges sera mis à disposition des AASQA pour la mise au point des préleveurs comprenant entre autre l’ensemble des recommandations. En 2011, des préleveurs « faits maison » et commerciaux ont fait l’objet de l’évaluation de leurs niveaux de blanc et de performance lors d’essais en chambre d’exposition [4]. En 2012, afin de compléter les travaux en atmosphère simulée, des essais sur le site trafic Auteuil d’AIRPARIF ont été réalisés en utilisant les préleveurs mis au point par Air LR, Air Breihz et AirAQ et le SYPAC V2 de TERA Environnement. À l’exception du SYPAC, dont le logiciel a montré des dysfonctionnements, l’ensemble des préleveurs a présenté des résultats satisfaisants [6]. En 2013, de nouveaux essais en atmosphère réelle ont été réalisés. Quatre préleveurs, deux « faits maison » par ATMOSF’Air Bourgogne et Air Lorraine, ainsi que deux commerciaux SYPAC de TERA Environnement, ont fait l’objet de l’évaluation de leur fiabilité pendant sept semaines sur le site industriel de Feyzin. Cette campagne de validation sur le terrain n’a pas eu les résultats que l’on pouvait attendre, par rapport à la campagne menée en 2012 en atmosphère réelle et au cours de laquelle les valeurs d’incertitude d’un préleveur étaient conformes aux exigences de la norme. Les écarts observés sur les résultats de concentration de benzène de chaque préleveur n’ont pas permis d’identifier la source de ces divergences qui se sont produites au cours de cet exercice d’intercomparaison. Par ailleurs, il semble difficile de trouver une explication à ces écarts, dans la mesure où des essais métrologiques visant à vérifier le bon fonctionnement du préleveur avant l’installation sur site n’ont pas été réalisés. Par contre, cette vérification sera exigée à partir de la prochaine campagne d’intercomparaisons de mesures des préleveurs benzène.   1. Directive européenne 2008/50/CE, DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on ambient air quality and cleaner air for Europe Disponible sur : http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:FR:PDF, 2008. 2. Guide de recommandation, et al., Guide technique de recommandation concernant la mesure du benzène en air ambiant. 2009. Disponible sur http://pro-lcsqa2.lcsqa.org/fr/rapport/2009/emd-ineris/mesure-benzene-guide-technique-recommandations-concernant-mesure-benzene-air. 4. Rapport LCSQA, L. Chiappini, and S. Fable, Surveillance du benzène 1/3: surveillance du benzène par échantillonnage actif, application de la norme 14662-1. 2011. Disponible sur : http://pro-lcsqa2.lcsqa.org/fr/rapport/2011/ineris/surveillance-benzene. 6. Rapport LCSQA, L. Chiappini, and S. Fable, Surveillance du benzène 1/3: surveillance du benzène par échantillonnage actif, application de la norme 14662-1. 2012. Disponible sur : http://pro-lcsqa2.lcsqa.org/fr/rapport/2012/ineris/surveillance-benzene.