Résultats de la recherche

362 résultats correspondent à AASQA
Lundi 12 décembre 2016
Rapport
Intercomparaison 2016 sur les granulomètres UFP 3031
AIRAQ, acteur chargé de la Surveillance de la qualité de l’air en Aquitaine, mène dans le cadre du Plan Régional Santé Environnement 2009‐2013 d’Aquitaine des mesures exploratoires de particules ultrafines (PUF), de diamètre inférieur à 100 nm. Les Associations de Surveillance de la Qualité de l’Air (AASQA) s’impliquant sur la thématique des PUF sont fédérées au niveau national à travers un Groupe de Travail (GT PUF). Le granulomètre UFP 3031 est jusqu’ici le principal appareil utilisé par ces AASQA pour le mesurage des particules ultrafines sur le terrain. La qualité de la base de données repose notamment sur la participation à des intercomparaisons, comme celles organisées par le LCSQA à Creil (Oise) en 2014 et 2015. L’objectif de l'étude "Intercomparaison 2016 sur les granulomètres UFP30 31" était l’organisation d’un exercice d’intercomparaison des UFP 3031 d’AIRAQ, sur son site de Mérignac. L’exercice a consisté d’une part, à comparer chaque UFP 3031 d’AIRAQ à une méthode prise en référence au niveau national, et d’autre part, à comparer les deux instruments d’AIRAQ entre eux. Cette prestation, assurée par le LCSQA, a également été l’occasion de former deux techniciens AIRAQ à l’utilisation de l’UFP 3031. L’exercice a tout d’abord mis en évidence la disparition d’un comportement atypique pour l’un des appareils : ce comportement, mis en évidence en 2014, et en diminution en 2015, n’a pas été détecté en 2016. Différents points techniques ont été considérés, permettant une meilleure utilisation et une meilleure connaissance de l’appareil. Une évolution du logiciel a ainsi été prise en main ; de même, le protocole de vérification des débits a été l’objet d’un échange, permettant notamment de mieux prendre en compte les recommandations « constructeur ». En ce qui concerne l’analyse statistique de la base de données, la comparaison avec un granulomètre (SMPS) de référence fait apparaître un écart en progression entre 2015 et 2016, un léger écart ayant déjà été observé entre 2014 et 2015. Il pourrait donc s’agit d’une réelle tendance. Pour leur part, les différences intra-techniques (entre les deux UFP 3031) sont globalement stables. Un point fort de ce type d’intercomparaison est de réaliser les mesures sur le terrain, en matrice réelle ; en contre-partie, l’exercice est dépendant des conditions rencontrées, à commencer par les niveaux de concentration. Au cours de l’analyse des données, s’est posée la question de savoir si ces niveaux peuvent avoir une influence sur les résultats : l’hypothèse est que des niveaux élevés permettraient de s’éloigner des limites de quantification des différents canaux, et par conséquent d’avoir de meilleurs résultats.  Cette réflexion sera à prendre en compte lors des futurs exercices. Ces travaux ont été financés par l’Association Agréée de Surveillance de la Qualité de l’Air en Aquitaine (AIRAQ).
Lundi 22 février 2010
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
Au sein du LCSQA, le LCSQA-LNE maintient des chaînes nationales d’étalonnage pour que les mesures de polluants gazeux effectués en stations de mesure soient raccordées aux étalons de référence par l'intermédiaire d'une chaîne ininterrompue de comparaisons, ce qui permet d’assurer la traçabilité des mesures aux étalons de référence. Ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 7) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans ce cadre, les étalons de transfert 1-2 de chaque laboratoire d’étalonnage sont raccordés par le LCSQA-LNE tous les 3 mois. De plus, le LCSQA-LNE est également mandaté pour réaliser le raccordement direct des étalons BTX utilisés par les réseaux de mesure, car vu le nombre de bouteilles de BTX utilisées en réseaux qui reste relativement faible, il a été décidé en concertation avec le MEEDDM et l’ADEME qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Cette étude a donc pour objectifs : De faire le point sur les étalonnages effectués par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA-INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTX et Air zéro) en 2009. De faire une synthèse des problèmes techniques rencontrés en 2009 par le LCSQA-LNE lors des raccordements. D'exposer les différentes phases de l’automatisation des étalonnages, cette automatisation ayant pour objectif de s’affranchir de certaines étapes des procédures actuellement mises en oeuvre pouvant être à l’origine de sources d’erreurs. De faire le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules. En effet, étant donné que la chaîne d’étalonnage nationale ne concerne que les polluants atmosphériques gazeux (SO2, NO, NO2, CO et O3), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs sur site est assurée dans l’attente de l’intégration des polluants PM10 et PM2.5 dans la chaîne. Ces dispositifs de transfert consistent en des cales étalons pour les microbalances à variation de fréquence permettant aux AASQA de vérifier l’étalonnage, la linéarité et le débit de prélèvement de leurs appareils directement en station de mesure. Pour l’année 2009, 15 mises à disposition ont été effectuées. Les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA (MVAE) varie entre 0,02 et 3,91% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 1,05 ± 0,36%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre –3,91 et +2,55 % pour 85 appareils contrôlés dont 18 FDMS (soit environ 18% du parc de microbalances TEOM actuellement en station de mesure). Le respect de la consigne pour le débit de prélèvement est également constaté (moyenne de valeur absolue d’écart de 1,40 ± 1,10% pour 34 appareils vérifiés dont 9 FDMS (soit environ 7 % du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement de la microbalance sur ce paramètre : le coefficient de régression moyen R2 varie de 0,9998 à 1, la pente et l’ordonnée à l’origine moyennes de la droite de régression varient respectivement de 0,979 à 1,007 et de – 173 à + 30, sachant que 37 appareils (dont 6 FDMS) ont été contrôlés sur ce paramètre (soit environ 8% du parc de microbalances TEOM actuellement en station de mesure). Enfin, cette année a débuté le contrôle des cales étalons pour jauges radiométriques MP101M de marque Environnement SA. Ce contrôle a consisté en la vérification par le LCSQA-EMD des valeurs de cales étalons fournies par le constructeur. Cette évaluation faite sur l’appareil de référence du LCSQA-EMD, préalablement étalonné et contrôlé par un couple de cales spécifiques a donné des résultats satisfaisants : l’écart constaté a été respectivement de –1,4% et + 3% sur les 2 cales contrôlées. Cette procédure de contrôle des étalons d‘AASQA sera complétée l’année prochaine par une mise à disposition de cales étalons permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité. Le comportement de la « chaîne de contrôle » mise en place par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules sont dans le programme des activités LCSQA de 2010.
Lundi 8 juillet 2013
Rapport
Synthèse des études 2012 : Modélisation, traitements numériques et instrumentation
Les travaux du LCSQA dans le domaine du traitement de données et de la modélisation se sont articulés en 2012 autour de quatre grands types d’application qui répondent aux attentes des AASQA et du Ministère, en matière d’évaluation de méthodologies et d’outils, et de production de données mutualisées. Il en est de même pour les travaux relatifs à l’instrumentation et l’acquisition de données. Les études menées annuellement permettent de consolider les recommandations et les cadrages techniques faisant l’objet de la mission de coordination du LCSQA. Ce rapport de synthèse est organisé autour des thématiques suivantes : Modélisation à l’échelle nationale et mise à disposition des AASQA des résultats de simulation de la chaine PREV’AIR (y compris en appui de la mise en œuvre du futur arrêté « Mesures d’urgence ») ; Cartographies d’indicateurs de la qualité de l’air (dépassements et exposition) : évaluation et définition de méthodologies de référence ; application à l’échelle nationale ; Evaluation des méthodes de modélisation aux échelles urbaine et locale et organisation d’un processus de validation des approches mises en œuvre par les AASQA par un exercice de benchmarking ; Traitement des données d’observation : qualification des données (révision de la méthode de classification des stations) et analyse des données observées à l’échelle nationale (notamment pour les PM2.5) ; Travaux d’instrumentation et d’informatique portant sur la chaîne d’acquisition et de transmission des données de qualité de l’air.
Lundi 13 avril 2015
Rapport
Contrôle qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQA-LNE et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, NO2, CO et SO2 :   Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol, NO2 de l’ordre de 200 nmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage.   Ces mélanges gazeux ont été titrés par le LCSQA-LNE puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après  réglage  de  l’analyseur  de  station  avec  l’étalon  de  transfert  2-3,  puis  les  ont renvoyés au LCSQA-LNE qui les a titrés de nouveau.   En 2014, 3 comparaisons interlaboratoires ont été réalisées :  Avec les réseaux de mesure AIR NORMAND, AIR PACA, AIR RA, ATMO CA et ATMOSF'AIR Bourgogne de mars à mai 2014, Avec les réseaux de mesure AIR COM, ATMO Franche-Comté, LIMAIR et AIRAQ de mai à juillet 2014, Avec les réseaux de mesure ATMO AUVERGNE, GWADAIR, ASPA et ORAMIP de septembre à janvier 2015.   En règle générale, les AASQA communiquent au LCSQA-LNE les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LCSQA-LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques.   Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LCSQA-LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes.                 Globalement, en 2013, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LCSQA-LNE et les niveaux 3 restent dans ces intervalles qui sont les suivants :                      7 % avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol,                      6 % avant et après réglage pour des concentrations en NO/NOx et en NO2 voisines de 200 nmol/mol,                      6% avant réglage et    4 % après réglage pour des concentrations en CO voisines de9 µmol/mol.   Les résultats montrent que : Globalement  la  chaîne  nationale  d'étalonnage  mise  en  place  pour  assurer  la traçabilité des mesures de SO2, de NO/NOx, de NO2 et de CO aux étalons de référence fonctionne correctement, Le  fait  de  régler  l’analyseur  avec  l’étalon  de  transfert  2-3  améliore  de  façon significative les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 :   Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage.     La présente comparaison interlaboratoires a été effectuée avec 14 niveaux 3 en 2014, à savoir : AIR PACA, LIMAIR, ORAMIP, ATMO Auvergne, Madininair, Air Pays de la Loire, LIG'AIR, ATMO Nord pas de Calais, ATMO CA, AIR COM, GWADAIR, AIRPARIF, ASPA et AIR BREIZH.   Les résultats obtenus en 2014 montrent que les écarts relatifs entre les concentrations en O3 déterminées par les 14 réseaux de mesure et celles déterminées par le LNE sont compris entre - 5 % et + 9 %.     Cependant, la deuxième valeur du réseau 4 présente un écart relatif plus important (+8,6%) avec la concentration moyenne du LNE. En enlevant la valeur de cet écart, les écarts relatifs entre les concentrations en O3 déterminées par les 14 réseaux de mesure et celles déterminées par le LNE sont compris dans un intervalle de   6 %.   De  plus,  les  écarts  relatifs  observés  entre  les  valeurs  des  AASQA  et  du  LNE  sont aléatoirement répartis de part et d’autre de zéro.
Vendredi 11 avril 2014
Page de livre
Référentiel pour la surveillance de la qualité de l'air en France
référentiel technique national  
Jeudi 23 mai 2013
Rapport
Développement de matériaux de référence pour les Hydrocarbures Aromatiques Polycycliques (HAP)
Les Hydrocarbures Aromatiques Polycycliques (HAP) sont des agents carcinogènes génotoxiques pour l’homme et leurs effets sur la santé sont principalement dus aux concentrations élevées dans l’airambiant, et en particulier sur les particules. C’est la raison pour laquelle la Commission Européenne asouhaité améliorer la surveillance et l’évaluation de la qualité de l’air en introduisant le suivi des HAP et plus particulièrement du benzo(a)pyrène (B[a]P) par le biais de la directive 2004/107/CE (4ème directive fille).Cette surveillance des HAP implique deux étapes : des prélèvements d'air ambiant sur filtres effectués par les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) et l'analyse de cesprélèvements en laboratoire afin de déterminer les concentrations de HAP. La pertinence d'un tel dispositif de surveillance de l'air repose sur la qualité des informationsobtenues. Elle peut être garantie de façon pérenne en développant des processus de quantificationreposant sur le raccordement des mesures réalisées par les AASQA à un même étalon de référencedétenu par un laboratoire de référence, ainsi que sur l’utilisation d’un Matériau de Référence Certifié (MRC). Cette procédure permet d'assurer la traçabilité des mesures réalisées sur site et de comparer les mesures effectuées par l’ensemble des AASQA dans le temps et dans l'espace.Dans le cas des analyses en laboratoire, le LNE a, entre autres, pour objectif d'établir la traçabilitémétrologique des résultats d'analyse en développant des MRC à l’aide de méthodes de référenceprimaires, quand cela est possible : l'utilisation de ces MRC lors des analyses en laboratoire permet de s'assurer de la justesse et de la fidélité des résultats, et de valider la méthode d’analyse.Une synthèse bibliographique sur les MRC de HAP a été réalisée en 2006 et a permis de mettre enévidence que les références de certains MRC disparaissent des catalogues et de montrer que seulsdeux types de MRC dans des particules étaient disponibles : un pour l’analyse des particules diesel etl’autre pour l’analyse de poussières dans les habitations. Mais, ces matériaux proposés ne sont pasreprésentatifs des particules prélevées dans l’air ambiant.C'est pourquoi le LNE a proposé de développer un MRC adapté à la problématique de lamesure des HAP dans l'air ambiant qui se présentera sous la forme de particules dopées avec des HAP déposées sur des filtres. La production d'un tel MRC comprend plusieurs phases :   le développement de la méthode d'analyse permettant de caractériser le MRC. la préparation du MRC (mise au point de la méthode de dopage de particules avec les HAP et détermination du mode d’impactage des particules sur le filtre). l'étude d’homogénéité et de stabilité dans le temps du MRC.   La méthode d’analyse des HAP dans les particules par ASE (Accelerated solvent extraction) ayant étéfinalisée et validée en 2010, il a été entrepris en 2011, de travailler sur le développement du MRC (phases 2 et 3). Une première étape a consisté à sélectionner des particules à impacter : des cendres d’incinération de déchets urbains et industriels ont été retenues comme matrice pour la fabrication du Matériau deRéférence Certifié (MRC) car leur composition chimique est en adéquation avec celle des particulesprélevées en air ambiant et le volume d’échantillon est suffisamment important pour assurer une production sur du long terme.La deuxième étape a porté sur le développement d’une méthode robuste pour la préparation desmatériaux. Elle peut être résumée en trois étapes :   Dopage des particules avec un mélange des huit HAP étudiés, Tamisage des particules dopées pour garantir l’homogénéité après le dopage, Impactage de 15 mg de cendres dopées sur filtre par « écrasement ».   La troisième étape a consisté à étudier les conditions de stockage de ce matériau, son homogénéité,sa stabilité dans le temps, ainsi que ses conditions de transport (stabilité lors du transport).Enfin, la dernière étape a consisté en la validation du MRC en réalisant une comparaison entrel’INERIS et le LNE. Cette comparaison montre qu’il n’existe pas de différence significative entre lesrésultats analytiques obtenus par le LNE et l’INERIS sur ce type de matériau. Au terme de cette étude, le LNE a donc développé un MRC pour les Hydrocarbures AromatiquesPolycycliques (HAP) : ce MRC se présente sous la forme de particules dopées avec des HAP,déposées sur des filtres. Les résultats de l’étude montre que ce MRC est stable durant plus de quatre mois, à condition de le conserver à l’abri de la lumière et à 4±3°C. De même, ce matériau est stable durant le transport dans les conditions suivantes : à l’abri de la lumière et en s’assurant de ne pas dépasser une température de 4°C. Enfin, le protocole de fabrication mis en place permet d’obtenir un lot dont l’homogénéité estinférieure aux incertitudes analytiques.
Vendredi 6 juillet 2018
Rapport
Campagne d’étalonnage des ACSM 2017 : Application d’une nouvelle méthode d’étalonnage et comparaison des mesures
Le rapport "Campagne d’étalonnage des ACSM 2017 : Application d’une nouvelle méthode d’étalonnage et comparaison des mesures" présente les résultats d’une campagne d’étalonnage et de comparaison des ACSM qui s’est déroulée en trois étapes successives, entre le 11 et le 29 mai 2017. Elle a rassemblé l’ensemble des ACSM en fonctionnement dans les AASQA. Dans un premier temps, les ACSM ont été configurés avec les paramètres d’étalonnages existants, déterminés lors de précédentes campagnes en station. Ils ont ensuite été connectés à l’air ambiant en parallèle à l’aide d’une ligne de prélèvement équipée d’une tête PM2,5 et laissés en fonctionnement du 11 au 15 Mai. L’objectif de cette première phase était de comparer les performances des ACSM pour la mesure des cinq espèces chimiques majeures : Matière Organique (OM), Nitrate (NO3-), ammonium (NH4+), sulfate (SO42-) et Chlore (Cl-). Les résultats de cette comparaison ont permis de montrer que les mesures des Q-ACSM participants étaient assez peu dispersées pour l’ensemble des espèces chimiques. Des comparaisons des mesures ACSM avec des mesures de la composition chimique de filtres prélevés dans la fraction PM1 ont également démontré la justesse des valeurs des efficacités d’ionisation (IE) et des efficacités d’ionisation relative de l’ammonium (RIE NH4) utilisés. Ces mêmes résultats ont montré par ailleurs une sous-estimation des mesures des des concentrations de sulfate par Q-ACSM. Dans un deuxième temps, des opérations d’étalonnage ont été menées sur l’ensemble des instruments afin de déterminer les efficacités d’ionisation (IE) et des efficacités d’ionisation relative de l’ammonium (RIE NH4). Une nouvelle procédure d’étalonnage a également été testée dans le but notamment d’améliorer les valeurs des efficacités d’ionisation relatives du sulfate (RIE SO4). Les coefficients d’étalonnages mesurés via les deux approches sont présentés dans ce rapport. A l’issue des opérations d’étalonnage, les ACSM ont été laissés en fonctionnement, du 19 au 29 mai, en parallèle pour la mesure de l’air ambiant. L’objectif était alors de comparer les performances des ACSM après étalonnage et de discuter des résultats des deux méthodes d’étalonnage appliquées. Après étalonnage, la dispersion des mesures ACSM a été réduite de manière notable. De plus, la nouvelle méthode d’étalonnage a permis une meilleure détermination des RIE SO4 plus satisfaisante que ceux qui étaient obtenus avec l’ancienne procédure.
Actualité
Mise à disposition des AASQA de données de population spatialisée
L’élaboration d’une méthodologie nationale harmonisée concernant la spatialisation de la population a fait l’objet de nombreux travaux au sein du LCSQA depuis 2012 (rapport « Méthodologie de répartition spatiale de la population », L. Létinois, 2013). La définition d’une telle méthodologie constitue en effet un prérequis pour que l’exposition de la population à la pollution atmosphérique soit calculée de manière homogène sur l’ensemble du territoire national. Début 2015, des données de population spatialisée ont été mises à la disposition de l’ensemble des AASQA et une page web dédiée sera très prochainement en ligne sur le portail LCSQA.
Actualité
HAWA MAYOTTE – la nouvelle AASQA mahoraise
HAWA Mayotte, l’AASQA mahoraise, a été créée lors de son assemblée constitutive qui s’est tenue à la DEAL de Mayotte le 21 novembre 2014. L’association a ensuite obtenu son agrément de la Direction Générale de l’Energie et du Climat par arrêté du 15 décembre 2014 et pour une durée d’un an. Sa création est l’aboutissement d’une année de travail de préparation et de motivation des différents acteurs, avec le soutien notamment du Bureau de la qualité de l’air de la DGEC et du LCSQA. Le recrutement d’un(e) Directeur(trice) est actuellement en cours.
Lundi 23 mai 2016
Rapport
Retour d’expérience sur les TEOM-FDMS 1405-DF
La note "Retour d’expérience sur les TEOM-FDMS 1405-DF" fait état d'un retour d’expérience suite aux interrogations des AASQA sur la qualité de la mesure fournie et un taux de panne a priori plus fréquent pour ce type d’appareil que pour le reste du parc des TEOM-FDMS. Le TEOM-FDMS 1405-DF est le dernier appareil développé par THERMO SCIENTIFIC pour la mesure en continu de la concentration massique en particules dans l’air ambiant. Il permet la mesure simultanée de la fraction PM10 et PM2,5. Afin de répondre à ces interrogations, les résultats des travaux menés dans le cadre du suivi d’équivalence des particules ainsi qu’au sein des AASQA disposant d’un TEOM-FDMS 1405-DF ont été exploités. Sur le volet des pannes, les informations collectées lors de ce travail ne permettent pas de conclure à un taux de panne et de gravité des TEOM-FDMS 1405-DF supérieur à la moyenne du parc des TEOM-FDMS du dispositif national. Concernant la qualité de la mesure fournie, le volume de données disponibles à ce jour ne permet pas de statuer sur la capacité du TEOM-FDMS 1405-DF à fournir une mesure pertinente, notamment par rapport à la méthode de référence par gravimétrie. Cependant, une tendance à la sous-estimation de la concentration en particules de la fraction PM10 d’environ 20% a été remarquée, quelle que soit la typologie des sites et quel que soit l’élément de comparaison utilisé (i.e. par rapport à la méthode de référence ou par rapport à un autre TEOM-FDMS, d’ancienne génération). En l’état, et en l’absence d’autres jeux de données, il est difficile de conclure sur l’origine de la sous-estimation de la fraction PM10 (fraction PM2,5, fraction COARSE (comprise entre les fractions  PM2,5 etPM10) ou combinaison des deux) De ce fait, ce retour d’expérience ne permet pas de retirer le TEOM-FDMS 1405-DF du matériel homologué, mais, conformément aux discussions des CS PM d’octobre 2015 et de mars 2016, le LCSQA recommande, dans l’attente de données complémentaires, de ne plus acheter de TEOM-FDMS type 1405-DF pour de la mesure réglementaire.