Résultats de la recherche

362 résultats correspondent à AASQA
Mardi 2 octobre 2007
Page
Modélisation, cartographie et traitement des données
Mardi 2 août 2022
Rapport
Pesticides dans l’air ambiant : Comparaison inter-laboratoires analytique 2021
Cette comparaison inter-laboratoires (CIL) dédiée aux pesticides et organisée par le LCSQA, fait suite à la dernière en date de 2015 qui montrait une disparité importante des performances des laboratoires avec in fine très peu de laboratoires satisfaisant les exigences en termes de capacité à répondre aux besoins de sous-traitance analytique (limite de quantification, rendement d’extraction, méthodes d’analyse, ...) des Associations agréées de surveillance de la qualité de l’air (AASQA). Cette CIL s’inscrit également dans le contexte du suivi pérenne engagé depuis 2021, et les résultats obtenus peuvent guider les AASQA dans la sélection de leurs laboratoires sous-traitants pour ce suivi. Cette CIL a porté sur 26 substances (25 substances semi-volatiles et une substance polaire (glyphosate)), à savoir :   2.4D fenpropidine permethrine alpha-HCH fluazinam propyzamide boscalid folpel prosulfocarbe chlorothalonil glyphosate pyrimethanil chlorpropham lindane (gamma HCH) s-metolachlore chlorpyriphos methyl metazachlore spiroxamine chlorpyriphos-ethyl oxadiazon tebuconazole cyprodinyl pendimethalin triallate deltamethrin pentachlorophenol     A noter que les précédentes CIL ne ciblaient pas les substances polaires. Ces 26 substances étaient réparties sur/dans différents matériaux d’essais. Des mousses dopées et des solutions de référence ont été dédiées à l’analyse de pesticides semi-volatils. Leurs préparations (conditionnement et dopage) et analyses pour l’étude d’homogénéité et de stabilité ont été effectuées par le LNE. Les concentrations cibles des solutions de référence C1, C2 et C3 ainsi préparées étaient comprises entre 71 et 1300 ng/mL avec un nombre de substances et des niveaux de concentrations variables selon la solution. Les quantités cibles des échantillons de mousses C1, C2 et C3 étaient comprises entre 71 et 3 240 ng selon la substance et le matériau (C1, C2 ou C3), ce qui correspond à des concentrations dans l’air ambiant comprises entre 0,4 et 20 ng/m3 pour des prélèvements hebdomadaires à 1m3/h. Des filtres en microfibre de quartz ont été choisis comme supports pour l’analyse du glyphosate. Ces derniers ont été conditionnés (calcination), dopés, et analysés par l’Ineris afin de vérifier leur homogénéité et stabilité. L’ensemble des filtres a été dopé avec des quantités équivalentes à des concentrations dans l’air ambiant comprises entre 0,7 et 0,07 ng/m3 pour des prélèvements de 24h à 30 m3/h. Trois laboratoires ont participé à cette comparaison inter-laboratoires : •           IANESCO •           LABORATOIRE DEPARTEMENTAL 31 •           MICROPOLLUANTS TECHNOLOGIE SA Etant donné le faible nombre de participants, cette CIL présentait des caractéristiques qui pouvaient la remettre en question quant à la robustesse de son interprétation. Le choix a été fait de la maintenir en raison de l’intérêt qu’elle présente dans l’apport d’informations autres que le seul classement des laboratoires selon leur z-score. Parmi celles-ci, on peut citer les informations concernant le traitement et le stockage des échantillons, les limites de quantification (LQ) et les rendements d’extraction. Parmi les enseignements de cette CIL, on soulignera la capacité des laboratoires participants à renseigner les résultats de la quasi-totalité des substances, et on retiendra l’absence de contamination des matrices vierges. Des différences de conditions de stockage, parfois non conformes à la norme en vigueur, ont été relevées, sans conséquences apparentes sur les résultats d’analyse. Les rendements d’extraction obtenus respectent les critères de la norme XP X43 059, à quelques exceptions près (entre 0 et 7 substances suivant le laboratoire). Ces dernières ne semblent pas avoir eu de répercussions visibles sur les écarts présentés entre les données d’analyse de ces laboratoires et les valeurs cibles attendues. De même pour ce qui est des détails des traitements analytiques mis en œuvre (concentration, nature des étalons internes, …) par les laboratoires, aucune répercussion n’a été observée sur les résultats transmis. Parmi les différentes conditions de dopage de cet exercice, l’introduction de fortes quantités de certaines substances par rapport à d’autres ne semble pas avoir généré de problème particulier d’analyse. De même, malgré des compositions différentes des matériaux d’essai (nombre de substances et concentrations variables, substances relativement délicates à séparer), aucun faux positif/négatif dans les différentes séries de matériaux d’essai n’a été observé. L’introduction du glyphosate, substance polaire non couverte par la norme XP X43-059, a conduit à des résultats satisfaisants pour les laboratoires ayant menés les analyses selon les délais définis. Au regard du nombre d’échantillons à traiter et de résultats à fournir par laboratoire, peu de résultats aberrants ont été comptabilisés. On note qu’au global, les dopages contenant les 25 substances suspectées d’interférences entre elles ne semblent pas amener de difficultés particulières en termes d’identification des substances. Compte-tenu du faible nombre de laboratoire participant, l’évaluation des résultats des laboratoires a été déterminée au travers du biais qui est l’expression de l’écart du résultat du participant avec la valeur cible attendue. Les biais de chaque laboratoire ont été calculés à partir de la moyenne des 3 résultats d’analyse rendus pour chaque série d’échantillon, sans tenir compte des incertitudes de la valeur cible (faible, de l’ordre de 2 %, sauf pour le s-métolachlore où elle était de l’ordre de 10 %). Ils ne prennent pas en compte celle des laboratoires (variable, allant de 15 et 44 %), qui pourrait induire une distorsion de traitement entre les labos dont l’incertitude est forte et présenteraient donc un faible nombre de biais, et ceux dont l’incertitude est faible avec potentiellement un nombre de biais plus élevé. La comparaison de l’ensemble des biais montre qu’ils sont plus importants sur la matrice « solutions de référence » que sur la matrice « mousse ». Contrairement aux attentes, il semble donc que les solutions de référence aient posé certaines difficultés analytiques non rencontrées avec les mousses. Aucune corrélation entre les conditions ou la durée de conservation des échantillons et les biais élevés n’a été identifiée. Au final, il semble que la dispersion des résultats entre les laboratoires soit essentiellement liée au traitement analytique adopté pour la quantification des échantillons. Au vu de la répétabilité des résultats obtenus pour chaque laboratoire, il semble que les incertitudes annoncées par ces derniers soient surestimées. En effet, pour chaque trio de résultats, les écarts observés sont majoritairement faibles (5-10 %) comparés à l’incertitude annoncée.   Les résultats de cette CIL sont globalement positifs mais font ressortir la nécessité d’apporter quelques précisions et compléments méthodologiques au travers de la révision de la norme XP X43-059 et de mener des discussions avec les laboratoires, notamment sur le cas des substances présentant des biais importants, ou encore celui d’une forte dispersion des résultats individuels   Pesticides in ambient air : analytical inter-laboratories comparison 2021   This inter-laboratory comparison (ILC) dedicated to pesticides and organized by the LCSQA, follows the last one in 2015 which showed a significant disparity in laboratory performance with ultimately very few laboratories meeting the requirements in terms of ability to meet the needs of analytical subcontracting (limit of quantification, extraction yield, methods of analysis, ...) Approved Air Quality Monitoring Associations (AASQA). This ILC is also part of the context of the sustainable monitoring undertaken since 2021, the results obtained can guide the AASQA in the selection of their subcontracting laboratories for this monitoring. This ILC covered 26 substances (25 semi-volatile substances and one polar substance (glyphosate)), namely: 2.4D fenpropidine permethrine alpha-HCH fluazinam propyzamide boscalid folpel prosulfocarbe chlorothalonil glyphosate pyrimethanil chlorpropham lindane (gamma HCH) s-metolachlore chlorpyriphos methyl metazachlore spiroxamine chlorpyriphos-ethyl oxadiazon tebuconazole cyprodinyl pendimethalin triallate deltamethrin pentachlorophenol Note that previous ILCs did not target polar substances. These 26 substances were distributed over/in different test materials. Doped foams (PUF) and reference solutions have been dedicated to the analysis of semi-volatile pesticides. Their preparations (cleaning and doping) and analyses for the study of homogeneity and stability were carried out by the LNE. The target concentrations of the reference solutions C1, C2 and C3 thus prepared were between 71 and 1300 ng/mL with varying numbers of substances and concentration levels depending on the solution. The target quantities of the C1, C2 and C3 foam samples ranged from 71 to 3 240 ng depending on the substance and material (C1, C2 or C3), corresponding to ambient air concentrations between 0.4 and 20 ng/m3 for weekly sampling at 1m3/h. Quartz microfiber filters were chosen as supports for glyphosate analysis. The latter were conditioned (calcination), doped, and analyzed by Ineris to verify their homogeneity and stability. All filters were doped with quantities equivalent to concentrations in ambient air between 0.7 and 0.07 ng/m3 for samples from 24h to 30 m3/h. Three laboratories participated in this inter-laboratory comparison: •           IANESCO •           LABORATOIRE DEPARTEMENTAL 31 •           MICROPOLLUANTS TECHNOLOGIE SA Given the low number of participants, this ILC had characteristics that could call into question the robustness of its interpretation. The choice was made to maintain it because of the interest it presents in the contribution of information other than the sole classification of laboratories according to their z-score. These include information on sample processing and storage, quantification limits (LQ) and extraction yields. Among the lessons of this CIL, we will highlight the ability of the participating laboratories to transmit the results of almost all the substances, and we note the absence of contamination of the blank matrices. Differences in storage conditions, sometimes not in accordance with the current standard, were noted, with no apparent impact on the analytical results. The extraction yields obtained meet the criteria of the french standard XP X43 059, with a few exceptions (between 0 and 7 substances depending on the laboratory). The latter do not appear to have had a visible impact on the difference presented between the analytical data from these laboratories and the expected target values. Similarly, the details of the analytical treatments carried out (concentration, nature of the internal standards, etc.) by the laboratories seems to have no repercussions on the results. Among the different doping conditions of this exercise, the introduction of large quantities of some substances compared to others does not seem to have generated any particular problem of analysis. Similarly, despite different compositions of the test materials (varying number of substances and concentrations, relatively difficult substances to separate), no false positives/negatives in the different series of test materials were observed. The introduction of glyphosate, a polar substance not covered by XP X43-059, led to satisfactory results for the laboratories that conducted the analyses according to the defined deadlines. In view of the number of samples to be processed and the results to be provided per laboratory, few outliers were recorded. It should be noted that, overall, doping containing the 25 substances suspected of interfering with each other does not seem to bring any particular difficulties in terms of identifying substances. Given the low number of participating laboratories, the evaluation of the laboratory results was determined through bias which is the expression of the deviation of the participant's result with the expected target value. The biases of each laboratory were calculated from the average of the 3 analytical results given for each sample series, without taking into account the uncertainties of the target value (low, of the order of 2%, except for s-metolachlor where it was of the order of 10%). They do not take into account either that of laboratories (variable, ranging from 15 to 44%), which could induce a distortion of treatment between labs with high uncertainty and therefore had a low number of biases, and those with low uncertainty with potentially a higher number of biases. The comparison of all the biases shows that they are more important on the "reference solutions" matrix than on the "PUF" matrix. Contrary to expectations, it therefore seems that the reference solutions posed some analytical difficulties not encountered with the PUF foams. No correlation between sample storage conditions (temperature and duration) and high biases was identified. In the end, it seems that the dispersion of the results between the laboratories is essentially related to the analytical treatment adopted for the quantification of the samples. In view of the repeatability of the results obtained for each laboratory, it seems that the uncertainties announced by the laboratories are overestimated. Indeed, for each trio of results, the observed differences are mostly small (5-10%) compared to the announced uncertainty. The results of this CIL are globally positive but highlight the need to make some clarifications and methodological additions through the revision of the NF XP X 43-059 standard and to conduct discussions with laboratories, particularly on the case of substances with significant biases, or a high dispersion of individual results.
Jeudi 18 mars 2021
Rapport
Contrôle qualité de la chaîne nationale de traçabilité métrologique
L'objectif de cette étude était d’effectuer des comparaisons interlaboratoires (CIL) entre le LCSQA-LNE et les Association Agréées de Surveillance de la Qualité de l’Air (AASQA) pour s’assurer du bon fonctionnement de la chaîne nationale de traçabilité métrologique et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Le LCSQA-LNE fait circuler des mélanges gazeux (NO/NOx, CO, NO2 et SO2) en bouteille de fraction molaire inconnue et un générateur d’ozone portable délivrant un mélange gazeux à une fraction molaire définie dans les stations de mesure des AASQA et les valeurs mesurées par les AASQA sont comparées avec les valeurs de référence du LCSQA-LNE. Concernant les composés NO/NOx, CO, NO2 et SO2, la CIL réalisée en 2020 a impliqué les réseaux de mesure suivants : Atmo Nouvelle-Aquitaine, AtmoSud, Atmo Normandie, Airparif, Atmo Bourgogne -Franche-Comté, Air Breizh, Atmo Auvergne -Rhône-Alpes et Qualitair Corse. Globalement, en 2020, lorsque les fractions molaires aberrantes sont éliminées, les écarts relatifs entre le LCSQA-LNE et les réseaux de mesure restent dans des intervalles qui sont les suivants : ± 7 % avant et après réglage pour SO2 ; ± 6 % avant et après réglage pour NO/NOx et NO2 ; ± 6 % avant réglage et ± 4 % après réglage pour CO. Les résultats obtenus montrent également que le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps. Concernant l’ozone, les réseaux de mesure Madininair, Air Pays de la Loire, Airparif, Lig'Air, Air Breizh, Atmo Bourgogne -Franche-Comté et Atmo Auvergne -Rhône-Alpes ont participé à la CIL organisée en 2020. Les résultats obtenus avec ces réseaux de mesure montrent qu’en enlevant des valeurs aberrantes, les écarts relatifs entre les fractions molaires en O3 déterminées par les réseaux de mesure et celles déterminées par le LCSQA-LNE sont compris entre -5% et +3%. De plus, les écarts relatifs observés entre les valeurs des AASQA et du LCSQA-LNE ne sont pas aléatoirement répartis de part et d’autre de zéro (les écarts relatifs négatifs sont prépondérants). En conclusion, globalement, la chaîne nationale de traçabilité métrologique mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx, de NO2, de CO et O3 aux étalons de référence fonctionne correctement.   Quality control of the national metrological traceability chain set up for air quality monitoring   organized in 2020 involved the following monitoring networks: Atmo Nouvelle-Aquitaine, AtmoSud, Atmo Normandie, Airparif, Atmo Bourgogne -Franche-Comté, Air Breizh, Atmo Auvergne -Rhône-Alpes et Qualitair Corse. Overall, in 2020, when outlier amount fractions are eliminated, the relative deviations between LCSQA-LNE and the measurement networks remain within the following intervals: ± 7% before and after adjustment with a transfer standard for SO2; ± 6% before and after adjustment with a transfer standard for NO/NOx and NO2; ± 6% before adjustment and ± 4% after adjustment with a transfer standard for CO. The results also show that adjusting the analyzer with a transfer standard improves relative deviations, which highlights a drift in analyzer response over time. With regard to ozone, the monitoring networks Madininair, Air Pays de la Loire, Airparif, Lig'Air, Air Breizh, Atmo Bourgogne -Franche-Comté et Atmo Auvergne -Rhône-Alpes participated in the ILC organized in 2020. The results obtained with these monitoring networks show that by removing outliers, the relative deviations between the O3 amount fractions determined by the monitoring networks and those determined by the LCSQA-LNE are between -5% and 3%. In addition, the relative deviations between the AASQA and LCSQA-LNE values are not randomly distributed on either side of zero (negative relative deviations are predominant). In conclusion, overall, the national metrological traceability chain set up to ensure the traceability of SO2, NO/NOx, NO2, CO and O3 measurements to national reference standards works properly.
Mardi 28 juin 2022
Rapport
Guide méthodologique pour la surveillance de l'Arsenic, du Cadmium, du Nickel et du Plomb dans l'air ambiant et les dépôts atmosphériques (mise à jour 2021)
Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 17 juin 2022. Mise en application : 1er janvier 2023     Il s'agit de la mise à jour du guide technique et méthodologique de l'analyse de l’As, du Cd, du Ni et du Pb dans l’air ambiant et dans les dépôts atmosphériques rédigé en 2011 par le LCSQA et obsolète à compter du 1er janvier 2023.   Ce guide se conçoit comme le référentiel français en termes d’exigence de qualité des données obtenues sur l’ensemble du territoire pour l’analyse des 4 métaux réglementés dans les PM10 (NF EN 14902 : 2005) et dans les dépôts humides ou totaux (NF EN 15841 : 2010). Pour les mesures des métaux dans les PM10, il préconise désormais des critères de qualité en termes de Limite de Quantification (LQ) et de gestion des blancs plus stricts qui doivent être pris en compte par les laboratoires d’analyses effectuant des prestations pour les AASQA. Il doit être utilisé comme une aide à la réalisation du cahier des charges à transmettre aux laboratoires en charge des analyses de ces métaux et comme une aide à la gestion des résultats de concentration en ces 4 métaux pour les AASQA..   Il s’articule de la façon suivante : Un chapitre sur le prélèvement et l’analyse de As, Cd, Ni et Pb dans l’air ambiant comme explicité par la Directive 2004/107/CE : Les mises à jour concernent : - L’intégration de l’ensemble des résolutions prises en CS « benzène-HAP-métaux lourds », approuvées en CPS depuis 2011 et intégrées dans le Référentiel Technique National (téléchargeable sur le site web du LCSQA : https://www.lcsqa.org/fr/referentiel-technique-national) ; - L’intégration des exigences de la norme NF EN 12341 Juin 2014 (en cours de révision pour 2022) relatives au prélèvement des PM10 et applicables pour le prélèvement des métaux particulaires ; - L’harmonisation des procédures de validation des échantillons et des blancs vis à vis du guide méthodologique pour la surveillance des hydrocarbures aromatiques polycycliques (HAP) dans l’air ambiant et dans les dépôts de 2015 ; - Les résultats des derniers exercices de comparaisons inter-laboratoires organisés par le LCSQA en 2020 (section 2.5).   Un chapitre concernant le prélèvement et l’analyse des métaux dans les dépôts : Les mises à jour concernent : - L’intégration des exigences de la mise à jour de la norme NF X43-014 Nov. 2017 Qualité de l’air - Air ambiant - Détermination des retombées atmosphériques totales - Echantillonnage ; - La préparation des échantillons avant analyses ; - La mise en adéquation du guide et des procédures mises en œuvre dans le cadre du dispositif MERA et des sites ruraux nationaux.   Un chapitre concernant la modélisation : Les textes réglementaires européens introduisent la prise en compte de la modélisation et de l’estimation objective de manière conditionnelle, afin de produire un niveau d’information sur la qualité de l’air, complémentaire aux mesures. Ce chapitre propose des éléments de définition de l’estimation objective et fait un état des études de modélisation des concentrations atmosphériques des métaux.   Un chapitre proposant une liste des éléments essentiels que les AASQA doivent faire apparaître dans le cahier des charges lors de leur demande de réalisation des analyses des métaux réglementés auprès des laboratoires prestataires.
Mardi 1 août 2023
Rapport
Guide : Guide méthodologique pour la mesure de la concentration en nombre des particules dans l'air ambiant par un compteur à noyaux de condensation
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 27 juin 2023. Mise en application : 27 juin 2023     Ce guide méthodologique LCSQA est destiné à l’utilisation des Compteurs à Noyaux de Condensation (CNC) pour la mesure de la concentration en nombre des particules (PNC) dans l’air ambiant. Le dispositif expérimental de surveillance nationale étant en développement[1] au moment de la rédaction de ce document, et compte-tenu de la diversité des modèles actuellement sur le marché, ce guide n’est pas spécifique à un CNC mais propose les prérequis génériques. Ainsi, ce document s’attache à recenser les bonnes pratiques, les fréquences de maintenance et les différentes étapes inhérentes à la validation des données. Ce guide ne constitue pas un mode opératoire ou un manuel d’utilisation et le lecteur est invité à se reporter au manuel fourni par le distributeur pour les informations relatives au fonctionnement de l’instrument lui-même. Ce guide a été rédigé sur la base des documents des constructeurs, des échanges avec les distributeurs, de l’état de l’art scientifique et des spécifications techniques CEN TS 16976. Il s’appuie aussi sur les retours d’expérience des utilisateurs des Associations agrées de surveillance de la qualité de l’air (AASQA), émis notamment lors des réunions LCSQA du « Groupe Utilisateur PNC » (GU PNC). Cette première version du guide pour l’utilisation des CNC sera mise à jour en fonction des retours d’expériences des utilisateurs, des préconisations du constructeur ou des avancées de l’état de l’art scientifique.     [1] LCSQA 2020 : Stratégie de surveillance nationale de la concentration en nombre total des particules (ultra-)fines     
Mardi 31 juillet 2012
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage Rédaction d’une plaquette synthétique relative à la qualité des mesures
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ».   Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-EMD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.   Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2x), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons debenzène, toluène et o-xylène (BTX) de l’ensemble des AASQA, car au vu dunombre relativement faible de bouteilles de BTX utilisées par les AASQA, il a été décidé en concertation avec le MEDDTL qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Depuis août 2011, le LNE certifie également les concentrations d’éthylbenzène, de m-xylène et de p-xylène en plus du benzène, du toluène et de l’o-xylène pour les mélanges gazeux de BTEX des AASQA. Le tableau ci-après résume les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro).       Nombre   2006 2007 2008 2009 2010 2011 Raccordements Niveau 1/ Niveaux 2 146 180 180 180 180 180 Raccordements BTEX 38 42 37 40 38 33 Raccordements LCSQA-INERIS 12 21 18 20 36 39 Raccordements ORA 0 8 6 6 5 7 Raccordements Madininair 16 24 13 25 19 13 Vérification « Air zéro » (Airparif, Oramip, APL, ORA) 4 4 4 7 6 12   Somme totale des raccordements 216 279 258 278 284 284   Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2011 par le LCSQA-LNE lors des raccordements, à savoir : - Les problèmes rencontrés sur les matériels du LCSQA-LNE, -  Les problèmes rencontrés au niveau des raccordements, -  Les problèmes rencontrés au niveau du transport des matériels. Concernant la mesure des particules, le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules est donné dans le présent rapport. Il convient de rappeler que la chaîne d’étalonnage nationale ne concernant que les polluants atmosphériques gazeux (SO2, NO, NO2, CO, O3 et BTX), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10 et PM2.5 sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne. Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage et la linéarité de leurs appareils directement en station de mesure, en y associant le débit de prélèvement. Pour l’année 2011, 14 mises à disposition ont été effectuées. Le respect de la consigne pour le débit de prélèvement est globalement constaté pour 29 appareils vérifiés dont 10 FDMS (soit environ 6% du parc d’analyseurs automatiques actuellement en station de mesure) et les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,64 et 1,54% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,97 ± 0,34%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre -4,1 et +2,7 % pour 62 appareils contrôlés dont 20 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement des appareils sur ce paramètre sachant que 26 appareils (dont 6 FDMS) ont été contrôlés soit environ 5% du parc de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle du moyen d’étalonnage et la linéarité montre l’excellent comportement des jauges sur ces paramètres sachant qu’a minima 4 appareils ont été contrôlés soit environ 8% du parc de jauges actuellement en station de mesure. Le comportement de cette « chaîne de contrôle pour la mesure des particules » assurée par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA. L’extension à des modèles de jauges radiométriques autres que la MP101M d’Environnement SA est à envisager, sous réserve de leur homologation par le Dispositif National de Surveillance de la Qualité de l’Air. Par ailleurs, en 2010, le LNE a rédigé un document de synthèse dont l’objectif était de réaliser un bilan du dispositif d'assurance qualité actuellement mis en œuvre sur le territoire français (fonctionnement des chaînes d'étalonnage, bilan des exercices d'intercomparaison…) pour garantir la qualité des mesures effectuées par les AASQA dans l’air ambiant. En 2011, le LNE a rédigé un projet de plaquette de 4 pages résumant le document de synthèse. Le but de cette plaquette est de rendre plus visibles les actions entreprises par la France pour garantir la qualité des mesures effectuées par les AASQA dans l'air ambiant et pourra être distribué lors de réunions, de congrès, de séminaires…
Jeudi 3 juin 2021
Rapport
Vérification de la qualité et veille technologique sur les filtres utilisés pour la mesure des métaux dans les PM10
Le LCSQA-IMT Lille Douai assure un rôle de conseil, de transfert de compétence et d’expertise vers les AASQA, soit directement, soit par l’intermédiaire de groupes de travail dans le domaine de la mesure des polluants métalliques dans les particules atmosphériques. En 2020, ce travail inclut l’analyse de filtres vierges en fibre de quartz précommandés par les AASQA et achetés en lots par SynAir’GIE. Cette année, 2 lots de filtres en fibre de quartz QMA Whatman GE (1300 filtres) et 1 lot de filtres QAT-UP Palflex (825 filtres) ont été contrôlés et caractérisés chimiquement vis à vis de leurs teneurs en métaux et métalloïdes. Les 3 lots testés ont été validés car les teneurs des 4 métaux réglementés mesurés sur les filtres vierges testés étaient du même niveau que les lots des années précédentes.   Quality check and technology watch of filters used for metals monitoring in PM10 LCSQA-IMT Lille Douai plays an advisory role, transferring skills and expertise to AASQA, either directly or through working groups in the field of measuring metal pollutants in atmospheric particles. In 2020, this work includes the analysis of virgin quartz fiber filters pre-ordered by the AASQA and purchased in batches by SynAir’GIE. This year, 2 batches of QMA Whatman GE quartz fiber filters (1300 filters) and 1 batch of QAT-UP Palflex filters (825 filters) were controlled and chemically characterized for their metal and metalloid contents. The 3 batches tested were validated as their contents for the 4 regulated metals measured on the virgin filters were at the same level as the previous years’ batches.
Lundi 9 janvier 2023
Rapport
Performances Prev’air en 2021
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org). L’objectif est de montrer des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2021 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2021. L’année 2021 a connu peu d’épisodes de pollution persistants d’ampleur nationale. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les calculs de l’adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Les gains obtenus par le modèle statistique résident dans sa capacité à corriger les biais de représentativité du modèle brut. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[1]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées et montrent des performances satisfaisantes. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[2] qui a établi ces valeurs cibles pour les différents scores ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le dispositif national de surveillance de la qualité de l’air. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité, notamment dans les DROM. La composition des PM1 prévue par Prev’air a été évaluée avec l’aide des données CARA[3].  La part d’ammonium, de nitrates, de sulfates et de matière organique est relativement bien représentée dans la spéciation des PM1 prévue par le modèle CHIMERE. Une nette amélioration a pu être constatée pour le chlore avec la mise en place de la nouvelle version de CHIMERE en novembre 2021.   [1] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [2] https://www.lcsqa.org/fr/referentiel-technique-national [3] Favez et al. (Atmosphere, 2021) CARA program     Performances of Prev’air in 2021   This report presents the performances of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev'Air's forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2021 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2021. Few persistent episodes of national scope were noted during 2021. The evaluation of these episodes is carried out both on Prev'Air's raw forecasts and on the statistical adaptation of the Chimere which aims at correcting the systematic biases of the raw model through a historical learning process. The gains obtained by the statistical model lie in its ability to correct the representativeness bias of the raw model. This statistically corrected forecast generally serves as a reference to the expertise of the Prev'air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[1]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well and show satisfactory performances. On the whole, the performance of Prev'Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[2] which established these target values for the different scores as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed using CARA[3] data. Ammonium, nitrates, sulphates and organic part are predicted relatively well by the CHIMERE model. An improvement has been noted for chlorine with the implementation of the new version of CHIMERE (v2020) in November 2021.   [1] Decree of 7 April 2016 relating to the triggering of prefectural procedures in the event of episodes of ambient air pollution [2] https://www.lcsqa.org/fr/referentiel-technique-national [3] Favez et al. (Atmosphere, 2021) CARA program).     .
Jeudi 18 mars 2021
Rapport
Développement d’étalons de référence pour l’ammoniac (NH3)
La mesure de l'ammoniac (NH3) dans l'air ambiant est un sujet sensible et prioritaire en raison de ses effets nuisibles sur la santé humaine et sur les écosystèmes. La Directive européenne sur les plafonds d'émissions nationaux (NEC) 2001/81/EC, définit des plafonds d'émission individuels notamment pour l’ammoniac pour chaque État membre, basés sur le Protocole de Göteborg. Cependant, cette directive ne donne aucune recommandation permettant de réaliser des mesures fiables d'ammoniac dans l’air ambiant notamment en termes d’étalonnage des appareils (procédures, fréquences…), d’incertitude maximale tolérée, de procédures d’assurance qualité et de contrôle qualité (QA/QC) aussi bien que d'infrastructure pour assurer la traçabilité métrologique des mesures. Pour pallier ce manque de traçabilité métrologique, le LCSQA-LNE a développé un étalon de référence d’ammoniac dans l’azote basé sur la méthode de génération dynamique par perméation en phase gazeuse sur une gamme de fractions molaires allant de 1 à 400 nmol/mol, en collaboration étroite avec la société 2MProcess selon le cahier des charges établi par le LCSQA-LNE. L’étalon de référence développé pour assurer la traçabilité des mesures de NH3 consiste en un banc à perméation avec des mesures de débit très précises (débitmètres massiques) et une maitrise de la pesée du tube à perméation. Ce système permet de garantir des incertitudes élargies relatives sur la fraction molaire d’ammoniac dans le gaz étalon généré inférieures à 2 % (k=2). Ce résultat est très satisfaisant au regard des difficultés engendrées par le niveau très faible des fractions molaires d’intérêt et les problèmes d’adsorption de l’ammoniac sur les surfaces en contact. Le développement du banc de référence d’ammoniac a déjà suscité un grand intérêt au sein du dispositif de surveillance de la qualité de l’air, puisqu’en fin d’année 2020, le LCSQA-LNE a réalisé l’étalonnage de 4 analyseurs pour les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA). Ces demandes pré-augurent de l’intérêt porté par les AASQA au développement de ce nouvel étalon de référence gazeux permettant de garantir la traçabilité et la qualité des mesures de NH3 réalisées sur le territoire français. De plus en 2021, le LCSQA en collaboration avec les AASQA définira une stratégie de surveillance nationale pour ce polluant.   Development of reference standard for ammonia (NH3) The measurement of ammonia (NH3) in ambient air is a sensitive and priority subject because of its harmful effects on human health and ecosystems. The European Directive on National Emissions Ceilings (NEC) 2001/81/EC sets individual emission ceilings, particularly for ammonia for each Member State, based on the Gothenburg Protocol. However, this directive does not give any recommendations for reliable ammonia measurements in ambient air, particularly in terms of calibration of devices (procedures, frequencies, etc.), maximum allowable uncertainty, quality assurance and quality control (QA/QC) procedures as well as infrastructure to ensure the metrological traceability of the measurements. To remedy the lack of metrological traceability, the LCSQA-LNE has developed a reference standard for ammonia in nitrogen based on the dynamic gas phase permeation generation method over a range of amount fractions ranging from 1 to 400 nmol/mol, in close collaboration with 2MProcess according to the specifications established by the LCSQA-LNE. The reference bench developed to ensure the traceability of NH3 measurements consists of a permeation bench with very precise flow measurements (mass flow meters) and with very precise control of the weighing of the permeation tube. This system ensures that the expanded uncertainties (k=2) on the amount fraction of ammonia in the standard gas generated are lower than 2%. This result is very satisfactory given the difficulties caused by the very low level of amount fractions of interest and by the problems of ammonia adsorption on contact surfaces. The development of the ammonia reference bench has already generated a great deal of interest in the air quality monitoring system, since at the end of 2020, the LCSQA-LNE carried out the calibration of 4 analyzers for the Air Quality Monitoring Associations (AASQA). These requests pre-augur the interest of the AASQA in the development of this new gas reference standard to guarantee the traceability and the quality of the NH3 measurements carried out on French territory. In addition, in 2021, the LCSQA, in collaboration with the AASQA, will define a national monitoring strategy for this pollutant. .
Jeudi 13 octobre 2022
Rapport
Rapport d'activité LCSQA 2020-2021
Après une première partie retraçant les faits marquants sur la période 2020-2021, le rapport d'activité présente l'ensemble des démarches mises en œuvre et les actions réalisées pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations décrites dans le contrat de performance 2016-2021 signé avec le ministère de la transition écologique : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires. Notons que 2021 constitue une étape finale dans la réalisation des objectifs fixés dans le contrat de performance du LCSQA 2016-2021 et dont le bilan est positif au regard des indicateurs retenus. Le LCSQA a pu maintenir sa capacité d’expertise scientifique et technique tout en respectant les obligations définies dans la réglementation, comme la réalisation des audits techniques des AASQA et le maintien et la mise à jour du Référentiel Technique National en produisant des notes stratégiques et des guides méthodologiques. Parmi les principaux sujets traités par le LCSQA en 2020-2021, on peut retenir : En collaboration avec le BQA et les AASQA, l'élaboration d'une stratégie harmonisée de surveillance de la concentration totale en nombre des particules (ultra)fines et la définition d'une stratégie de suivi pérenne des pesticides dans l’air. L’ensemble des travaux du LCSQA concernant les polluants d’intérêt national et émergents (Particules Ultra Fines, potentiel oxydant des particules, 1,3-butadiène, NH3, H2S, pesticides) est décrit dans un dossier technique dédié (publié prochainement) ; La poursuite des travaux sur les systèmes capteurs pour la surveillance de la qualité de l’air avec notamment leur couplage avec des drones et la mise à disposition d’algorithmes « open-source » pour réaliser des cartographies à partir de systèmes capteurs mobiles (SESAM) ; L’ouverture et la valorisation auprès du public des données de qualité de l’air avec la mise en service, en septembre 2021, du nouveau site Geod’air, système national de gestion des données de qualité de l’air ; la poursuite de la collaboration avec le Gouvernement de la Nouvelle Calédonie qui s’est traduite par la fourniture à la Direction de l'Industrie, des Mines et de l'Energie de la Nouvelle-Calédonie de plusieurs guides méthodologiques et notes techniques, en lien avec la publication en janvier 2021 de l'arrêté relatif à l'amélioration de la qualité de l'air. L'accompagnement de Scal’Air (organisme de surveillance de la qualité de l’air en Nouvelle-Calédonie) s'est traduit par la finalisation de la comparaison interlaboratoire concernant la mesure automatique des particules (PM10 et PM2.5), et l’appui technique pour la mise en œuvre de la modélisation à Nouméa.