Résultats de la recherche

362 résultats correspondent à AASQA
Jeudi 17 décembre 2020
Rapport
Comparaison inter-laboratoires pour la mesure des métaux (As, Cd, Ni et Pb) dans les PM10
Le LCSQA  a organisé en 2020 le dixième exercice de comparaison inter-laboratoires (CIL) pour la mesure des métaux réglementés dans les PM10. Cette CIL permet de déterminer si les critères de qualité des directives 2004/107/EC, 2008/50/CE et 2015/1480/UE l’analyse de l’As, Cd, Ni et Pb dans les PM10 sont atteints par les laboratoires d’analyse, d’évaluer la fidélité des méthodes de mesures utilisées et d’identifier les principales sources d’incertitudes. Il est important de contrôler la qualité de mesures des laboratoires réalisant des analyses de métaux pour les AASQA en France, afin de garantir la justesse et l'homogénéité (absence de biais entre les laboratoires) des résultats obtenus au niveau national. Elle permet en outre aux AASQA d’effectuer un choix avisé de leurs laboratoires d’analyse pour l’année N+1 sur la base de critères techniques objectifs. En 2020, 5 laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Laboratoire départemental 31 EVA (Launaguet), Micropolluants Technologie (Thionville) et TERA Environnement (Crolles), auxquels s’ajoute le laboratoire de l’IMT Lille Douai. Chaque laboratoire a analysé 4 filtres impactés de particules prélevées sur un site urbain avec des concentrations en métaux variables et dix filtres vierges en fibre de quartz (issus du même lot) transmis par le LCSQA-IMT Lille Douai. L’analyse de 10 échantillons de leur matériau de référence certifié (MRC) habituel a permis d’estimer les taux de récupération lors de la minéralisation des particules. En complément, deux solutions étalons de concentrations connues en métaux certifiés par le LCSQA-LNE, ont aussi été analysés par les laboratoires. En outre, 6 éléments supplémentaires (Co, Cu, Hg, Mn, V, Zn) ont été proposés en option pour l’analyse dans les différents échantillons fournis. Tous les participants ont utilisé la méthode de la norme EN 14902 : 2005, incluant une attaque en milieu fermé par minéralisateur micro-ondes à l'aide d'un mélange HNO3/H2O2 et une analyse par ICP-MS. Le traitement statistique des résultats a permis de montrer que les résultats obtenus par les différents laboratoires sont globalement satisfaisants et comparables à ceux de la CIL de 2017. Tous les laboratoires détectent l’As, le Cd, le Ni et le Pb sur les filtres impactés de PM10 avec 100 % de leurs résultats avec de Z-scores compris entre -2 et 2. Les principales difficultés des analyses sur filtres sont identifiées pour le Ni dont les teneurs étaient particulièrement faibles lors de cet exercice. Les résultats obtenus sur les 2 solutions étalons sont satisfaisants avec une reproductibilité inter-laboratoires de 6 % à 10 % pour les éléments Cd, Ni et Pb quelles que soient la solution étalon et de l’ordre de 15% pour l’arsenic dans la solution à plus basses teneurs (norme 5725-2). Les concentrations mesurées ne montrent pas de biais systématiques par rapport à la valeur de référence du LNE. Les très faibles teneurs analysées lors de cette CIL montrent la capacité des laboratoires à mesurer avec l’incertitude requise, les éléments As, Cd, Ni et Pb (et pour certains également Mn, V, Cu, Zn, Co et Hg) pour des prélèvements hebdomadaires sur un site urbain de fond et la possibilité de réaliser un historique fiable des concentrations ambiantes à des teneurs réalistes.   Inter-laboratory comparison for the measurement of As, Cd, Ni and Pb in PM10 In 2020, the LCSQA organized the tenth inter-laboratory comparison exercise (CIL) for the measurement of regulated metals in PM10. This CIL allows determining whether the quality criteria of directives 2004/107/EC, 2008/50/EC and 2015/1480/UE for the analysis of As, Cd, Ni and Pb in PM10 are met by laboratories, evaluate the reliability of the measurement methods used and identify the main sources of uncertainty. It is important to control the quality of measurements from laboratories carrying out metal analysis for AASQA in France, in order to guarantee the accuracy and homogeneity (absence of bias between laboratories) of the results obtained at national level. It also allows AASQA to make an informed choice of their analysis laboratories for year N + 1 on the basis of objective technical criteria. In 2020, 5 independent laboratories took part in this exercise: Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Departmental laboratory 31 EVA (Launaguet), Micropolluants Technologie (Thionville) and TERA Environnement (Crolles), to which is added the laboratory from IMT Lille Douai. Each laboratory analyzed 4 filters impacted by particles taken from an urban site with variable metal concentrations and ten virgin quartz fiber filters (from the same batch) transmitted by LCSQA-IMT Lille Douai. Analysis of 10 samples of their usual Certified Reference Material (RCM) allowed recovery rates to be estimated during particle mineralization. In addition, two standard solutions of known metal concentrations, certified by the LCSQA-LNE, were also analyzed by the laboratories. In addition, 6 additional elements (Co, Cu, Hg, Mn, V, Zn) were offered as options for analysis in the various samples provided. All participants used the method of EN 14902:2005, including an attack in a closed environment by microwave mineralizer using a mixture of HNO3/H2O2 and analysis by ICP-MS. The statistical processing of the results has shown that the results obtained by the various laboratories are generally satisfactory and comparable to those of the CIL of 2017. All the laboratories detect As, Cd, Ni and Pb on the impacted filters. of PM10 with 100% of their results with Z-scores between -2 and 2. The main difficulties on filters analysis are identified for Ni which had particularly low concentrations during this CIL. The results obtained on the 2 standard solutions are satisfactory with an inter-laboratory reproducibility of 6% to 10% for the elements Cd, Ni and Pb whatever the standard solution and in the order of 15% for As in the low concentration solution (standard 5725-2). The measured concentrations do not show any systematic bias compared to the LNE reference value. The very low contents analyzed during this CIL show the capacity of the laboratories to measure, with the required uncertainty, the elements As, Cd, Ni and Pb (and for some also Mn, V, Cu, Zn, Co and Hg) for weekly samples at an urban background site and the possibility of making a reliable monitoring of ambient concentrations at realistic levels.
Lundi 23 mars 2020
Rapport
Intercomparaison de moyens mobiles 2019 – Site de Lyon
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en termes d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air (AASQA) sont tenues de participer régulièrement aux essais d'intercomparaison (destinées aux organismes agréés de surveillance de la qualité de l’air) mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 16 de l’arrêté modifié du 19 avril 2017). Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un exercice d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2019 sur l’hippodrome de Parilly à Lyon. Il a réuni 8 participants (7 AASQA et le LCSQA/INERIS) et 7 moyens mobiles (AirBreizh partageant le moyen mobile d’Air Pays de la Loire équipé de 2 têtes de prélèvement indépendantes) le tout constituant un parc de 39 analyseurs. L’exercice d’intercomparaison n’a pu être réalisé sur l’ozone, le générateur d’ozone haute concentration de l’INERIS étant tombé en panne lors de l’installation du matériel. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en oeuvre des méthodes de mesures par les AASQA en conditions réelles. D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et permettant la détermination des z-scores sont homogènes et très satisfaisants pour les participants. Les z-scores des participants sont compris entre ±2 sauf ceux du Laboratoire 8 concernant le CO pour qui le z-score est de -2,3 sur le palier 1 (1,5 ppm) et -2,4 sur le palier 2 (2 ppm). On notera que depuis 2008, les résultats obtenus en termes d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national.
Jeudi 13 janvier 2022
Rapport
Synthèse des résultats du suivi de l’adéquation des analyseurs automatiques de PM à la méthode de référence
    Cette note fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Elle a fait l'objet d'une résolution approuvée en CPS (comité de pilotage de la surveillance) du 16 décembre 2021. Mise en application : 1er janvier 2022   Conformément aux exigences de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant en France, le LCSQA est en charge, en collaboration avec les AASQA, d’assurer le suivi en continu de l’adéquation entre la méthode de référence et les AMS conformes pour la mesure des PM en France. En 2020, le LCSQA a publié un rapport présentant le bilan des résultats issus des campagnes de mesure réalisées entre 2016 et 2019 et répondant aux exigences de la norme NF EN 16450 en termes de nombre et de répartition des données. Il s’est attaché à comparer et à mettre en perspective les résultats avec ceux obtenus dans les deux bilans indicatifs de trois ans réalisés sur les périodes 2013-2016 et 2015-2017. Le rapport présente également un bilan global regroupant l’ensemble des données acquises depuis 2013. Les conclusions de ce rapport portent uniquement sur la France métropolitaine, les DROM n’ayant pas encore fait l’objet de campagnes de mesure validées. A l’issue de ce rapport, une note de synthèse portant sur les conclusions a été rédigée à l’attention du ministère de la transition écologique.     On going verification of suitability of automated measuring system with the referece method: summary of results In accordance with the requirements of the decree of 16 April 2021 on the national ambient air quality monitoring system in France, the LCSQA is in charge, in collaboration with the AASQA, of on-going check of equivalence between the reference method and the compliant AMS for the measurement of PM in France. In 2020, the LCSQA published a report presenting the results of the measurement campaigns carried out between 2016 and 2019 and meeting the requirements of standard NF EN 16450 in terms of the number and distribution of data. It has endeavoured to compare and put the results into perspective with those obtained in the two three-year indicative assessments carried out over the periods 2013-2016 and 2015-2017. The report also presents an overall assessment of all the data acquired since 2013. The conclusions of this report only concern metropolitan France, as the DROMs have not yet been the subject of validated measurement campaigns. A summary note, based on the conclusions of this report, has been written for the Ministry of Ecological Transition.
Mercredi 2 février 2022
Rapport
Tests d'efficacité de piégeage du dicamba, quinmérac et piclorame
Le dicamba, le piclorame et le quinmérac font partie de la liste des substances cibles de la Campagne Nationale Exploratoire sur les Pesticides (CNEP) réalisée par l’Anses, le réseau des AASQA et l’Ineris en tant que membre du LCSQA, entre juin 2018 et juin 2019. L’analyse du dicamba, du piclorame et du quinmérac dans les prélèvements d’air ambiant, en phase particulaire, a fait l’objet d’un précédent rapport (ici). L’objectif de ces travaux est de déterminer l’efficacité de piégeage de ces substances lors du prélèvement. Les tests d’efficacité de piégeage du prélèvement du dicamba, du quinmérac et du piclorame ont été réalisés conformément à la norme XP X43-058 « Air ambiant - Dosage des substances phytosanitaires (pesticides) dans l'air ambiant - Prélèvement actif » (Septembre 2007), sur deux appareillages : un préleveur séquentiel bas débit « Partisol » et un préleveur séquentiel haut débit « DA80 » de la société suisse DIGITEL. La détermination de l’efficacité de piégeage du prélèvement est étudiée à trois niveaux de concentration dans l’air ambiant : 1, 10 et 100 ng/m3. Le précédent rapport (ici) détaillait la méthode d’analyse par LC/MS2. L’extraction était alors réalisée aux ultrasons par de l’eau acidifiée pH2 à l’acide chlorhydrique (0,1% HCl à 37%), suivant les préconisations d’extraction détaillées dans le rapport "métrologie du glyphosate et de ses métabolites en air intérieur et extérieur : tests de prélèvements actifs" (2012). L’acide chlorhydrique n’étant pas conseillé sur les analyseurs de spectrométrie de masse (MS), des essais complémentaires sur les milieux d’extraction possibles ont été réalisés lors de cette étude. Ils ont permis de mettre en évidence que l’eau (EMQ) ou l’eau acidifiée pH2 avec de l’acide formique (0,9% d’acide formique) (EMQ pH2) permettent d’obtenir des rendements d’extraction proches de 100%. Les filtres issus des tests d’efficacité de piégeage ont donc été extraits à l’eau ultrapure non acidifiée (EMQ). Les résultats des tests d’efficacité de piégeage réalisés en janvier et février 2021 ont permis de mettre en évidence que : Pour le dicamba, aucune des conditions de prélèvement testées n’est efficace pour son piégeage sur filtre quartz. Pour le piclorame et le quinmérac, le prélèvement sur filtre quartz par le préleveur Partisol, pendant 1 semaine, est le plus adapté quel que soit le niveau de concentration dans l’air.     Dicamba, quinmerac and picloram trapping efficiency tests.   Dicamba, picloram and quinmerac are part of the list of target substances of the National Exploratory Campaign on Pesticides (CNEP) carried out by Anses, the AASQA network and Ineris as a member of the LCSQA, between June 2018 and June 2019. A previous report described the analysis of dicamba, picloram and quinmerac in ambient air samples, in the particulate phase (here). The objective of this work is to test the trapping efficiency of the sampling for these substances. The trapping efficiency tests for dicamba, quinmerac and picloram were carried out in accordance with standard XP X43-058 « Air ambiant - Dosage des substances phytosanitaires (pesticides) dans l'air ambiant - Prélèvement actif » (September 2007), on two devices: a “Partisol” low flow sequential sampler and a high-speed sequential sampler “DA80” from the Swiss company DIGITEL. The determination of the sampling trapping efficiency was studied at three concentration levels in ambient air: 1, 10 and 100 ng / m3. The previous report (here) detailed the LC/MS2 analytical method. The extraction was then carried out by an ultrasonic extraction with acidified water pH2, with hydrochloric acid (0.1% HCl at 37%), according to the extraction recommendations detailed in report "métrologie du glyphosate et de ses métabolites en air intérieur et extérieur : tests de prélèvements actifs" (2012). As hydrochloric acid is not recommended for mass spectrometry (MS) analyzers, additional tests on the possible extraction medium were carried out during this study. It was demonstrated that extraction with water (EMQ) or acidified water pH2 (EMQ pH2) with formic acid (0.9% formic acid) could lead to yields close to 100%. The filters resulting from the trapping efficiency tests were therefore extracted with ultrapure water (EMQ). The results of the trapping efficiency tests carried out in January and February 2021 showed that: For dicamba, none of the sampling conditions tested is effective for its trapping on a quartz filter. For picloram and quinmerac, sampling on a quartz filter using the Partisol sampler, for 1 week, is the most suitable regardless of the level of concentration in the air.
Mercredi 2 février 2022
Rapport
Tests d’une méthode d’analyse LC/MS/MS du glyphosate et ses métabolites sans dérivation et extension au fosétyl-al
Le glyphosate, son produit de dégradation l’acide aminométhylphosphonique (AMPA) et le glufosinate font partie de la liste des substances cibles de la campagne nationale exploratoire sur les pesticides (CNEP) réalisée par l’Anses, le réseau des AASQA et l’Ineris en tant que membre du LCSQA, entre juin 2018 et juin 2019. Le fosétyl-Al quant à lui est un composé polaire dont l’analyse dans l’air ambiant reste encore peu maîtrisée. Ainsi, l’objectif de ces travaux était de tester une nouvelle méthode d’analyse permettant d’analyser simultanément l’ensemble de ces 4 composés, par chromatographie liquide couplée à un spectromètre de masse, sans nécessité de passer par une étape de dérivation. La méthode développée en LC/MS2 par le LCSQA-Ineris met en œuvre une colonne de chromatographie en mode mixte à interaction hydrophile (HILIC) et d’échange anionique faible (WAX : weak anion exchange). Cette méthode permet de s’affranchir de l’étape de dérivation, d’injecter en direct l’extrait, et d’atteindre des LQ de 50 pg/mL pour le glufosinate, l’AMPA et le fosétyl-Al, et de 100 pg/mL pour le glyphosate. Ces essais ont également permis de mettre en évidence que l’extraction des filtres quartz pouvait être réalisée aussi bien par de l’eau ultrapure acidifiée pH2 (0,9% d’acide formique) (EMQ pH2) que par de l’eau ultrapure (EMQ). Cette méthode permet à la fois de faciliter le traitement d’échantillon et de réduire le temps et le coût d’analyse. Les rendements d’extraction obtenus, quel que soit le milieu d’extraction choisi (EMQ ou EMQ pH2), sont supérieurs à 94% pour l’ensemble des composés. Les performances de la méthode d’analyse sont les suivantes :   LQ LC/MS2 (pg/mL) Rendement Extraction (%) LQ méthode (ng) DA 80 -24H LQ (ng/m3) DA 80-48H LQ (ng/m3) Partisol LQ (ng/m3)     EMQ EMQ pH2           Glyphosate 100 99 100 5 0,007 0,003 0,030   AMPA 50 101 115 2,5 0,004 0,002 0,015   Glufosinate 50 100 101 2,5 0,004 0,002 0,015   Fosétyl-Al 50 98 98 2,5 0,004 0,002 0,015     Volume d’air prélevé 720 m3 1440 m3 168 m3     Durée du prélèvement 24h 48h 1 semaine                           Les résultats de l’étude de stabilité des extraits de filtres quartz conservés à +4°C pendant 14 jours, montrent que le glyphosate, l’AMPA, le glufosinate et le fosétyl-Al sont stables dans l’extrait acidifié. Concernant les extraits aqueux, les 4 composés sont stables 14 jours, avec une légère perte pendant les 7 derniers jours de stockage à +4°C, autour de 10 %, pour la teneur la plus basse (168 ng) en glyphosate.     Testing of a LC/MS/MS method of analysis of glyphosate and its metabolites without derivatization and extension to fosetyl-al   Glyphosate, its degradation product aminomethylphosphonic acid (AMPA) and glufosinate are part of the list of target substances of the national exploratory campaign on pesticides (CNEP) carried out by ANSES, the AASQA network and Ineris as member of LCSQA, between June 2018 and June 2019. Fosetyl-Al is a compound whose analysis in ambient air remains poorly documented. Thus, the objective of this work was to test a new analytical method to analyze simultaneously these 4 compounds, without the need to derivatize glyphosate and other compounds, by liquid chromatography coupled to a mass spectrometer. The method developed in LC / MS2 by LCSQA-Ineris shows that the use of a mixed mode chromatographic column with hydrophilic interaction (HILIC) and weak anion exchange (WAX: weak anion exchange), enables to by-pass the derivatization step, to inject directly the extract, and to achieve LOQs of 50 pg / mL for glufosinate, AMPA and fosetyl-Al and of 100 pg / mL for glyphosate. These tests also demonstrated that the extraction of the quartz filters could be carried out both by acidified ultrapure water pH2 (0.9% formic acid) (EMQ pH2) and by ultrapure water (EMQ). This method facilitates sample processing and reduces the time and the cost of analysis. The extraction yields obtained, regardless of the medium chosen (EMQ or EMQpH2), are greater than 94% for the 4 compounds. The performances of the analytical method are as follows:   LoQ LC/MS2 (pg/mL) Extraction efficiency (%) LoQ méthod (ng) DA 80-24H LoQ (ng/m3) DA 80-48H LoQ (ng/m3) Partisol LoQ (ng/m3)     EMQ EMQ pH2         Glyphosate 100 99 100 5 0,007 0,003 0,030 AMPA 50 101 115 2,5 0,004 0,002 0,015 Glufosinate 50 100 101 2,5 0,004 0,002 0,015 Fosetyl-Al 50 98 98 2,5 0,004 0,002 0,015   Air volume sample 720 m3 1440m3 168 m3   Sampling time 24h 48h 1 week                     The results of the stability study of extracts from quartz filters stored at + 4 ° C for 14 days, show that glyphosate, AMPA, glufosinate and fosetyl-Al are stable in acidified extract. Regarding the aqueous extracts, the 4 compounds are stable for 14 days, with a slight loss during the last 7 days of storage at + 4 ° C, around 10%, for the lowest content (168 ng) of glyphosate
Mercredi 2 mars 2022
Rapport
Performances Prev’air en 2020
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org). L’objectif est de montrer en toute transparence des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2020 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2020. L’année 2020 a été marquée par la crise Covid-19 et par les confinements que celle-ci a entraînés au sein des pays de l’Europe, perturbant ainsi les activités humaines habituelles et les émissions de polluants associées. Le système Prev’Air a cependant continué de produire des prévisions sur la base de ses émissions standard, donc sans modulation vis-à-vis de ces perturbations. Notons toutefois que le système Prev’Air bénéficie d’une approche de correction automatique statistique et géostatistique qui repose sur les observations en temps réel, permettant ainsi de prendre en compte indirectement l’effet des confinements. Une prévision opérationnelle complémentaire a été produite à partir de mars 2020, intégrant une estimation de baisse des émissions liée aux mesures de lutte contre la pandémie Covid[1], mais elle ne fait pas l’objet d’une évaluation dans le cadre de ce rapport. Peu d’épisodes persistants d’ampleur nationale ont été relevés sur les périodes étudiées : un pour l’ozone, du 6 au 12 août, et trois pour les PM10, du 21 au 26 janvier (avec dépassement du seuil d’alerte), du 27 au 28 mars, et du 22 au 27 novembre. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les calculs de l’adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Les gains obtenus par le modèle statistique résident dans sa capacité à corriger les biais de représentativité du modèle brut. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[2]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées et montrent des performances satisfaisantes. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[3] qui a établi ces valeurs cibles pour les différents scores ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le dispositif national de surveillance de la qualité de l’air. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité notamment dans les DROM. La composition des PM1 prévue par Prev’air a été évaluée pour la première fois avec l’aide des données CARA[4].  L’ammonium, les nitrates et les sulfates sont relativement bien prévus par le modèle CHIMERE. La partie organique est fortement sous-estimée. Quant au chlore, une nette amélioration devrait être constatée à partir de fin 2021 avec la mise en place de la nouvelle version de CHIMERE (v2020)   Performances of Prev’air in 2019   This report presents the performance of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev'Air's forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2020 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2020. The year 2020 was affected by the Covid-19 crisis and by the lockdowns that occurred in European countries, thus disrupting the usual human activities and associated emissions of pollutants. However, the Prev'Air system continued to produce forecasts based on its standard emissions, without modulation regarding these disturbances. However, it should be noted that the Prev’Air system benefits from an automatic statistical and geostatistical correction approach based on real-time observations, thus making it possible to indirectly consider the effect of confinements. An additional operational forecast was produced starting from March 2020, implementing an estimation of the reduction in emissions due to measures taken against the Covid pandemic[1], but its assessment is not included in this report. Few persistent episodes of national scope were noted over the studied periods: one for ozone, from August 6 to 12, and three for PM10, from January 21 to 26 (with exceedances of the alert threshold), from March 27 to 28, and from November 22 to 27. The evaluation of these episodes is carried out both on Prev'Air's raw forecasts and on the statistical adaptation of the Chimere which aims at correcting the systematic biases of the raw model through a historical learning process. The gains obtained by the statistical model lie in its ability to correct the representativeness bias of the raw model. This statistically corrected forecast generally serves as a reference to the expertise of the Prev'air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[2]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well and show satisfactory performances. On the whole, the performance of Prev'Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[3] which established these target values for the different scores as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed for the first-time using CARA[4] data. Ammonium, nitrates and sulphates are predicted relatively well by the CHIMERE model. The organic part is greatly underestimated. Concerning chlorine, an improvement should be noted from the end of 2021 with the implementation of the new version of CHIMERE (v2020).       [1]https://www.ineris.fr/fr/ineris/actualites/confinement-environnement-no… [2] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [3] https://www.lcsqa.org/fr/referentiel-technique-national [4] Favez et al. (Atmosphere, 2021) CARA program   .
Mardi 24 novembre 2020
Rapport
Comparaison Inter-Laboratoires (CIL) 2018 des analyseurs de mesure automatique des particules (PM)
L’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant (modifié par l'arrêté du 17 juillet 2019) définit les missions que l’état confie aux trois acteurs de ce dispositif (LCSQA, AASQA et consortium PREV’AIR). Ainsi, le LCSQA a pour mission d’organiser des comparaisons inter-laboratoires (CIL) pour les mesures et la modélisation auxquelles les AASQA doivent participer. Dans ce contexte, le LCSQA organise régulièrement des CIL portant sur la mesure de particules (PM) en continu à l’aide d’analyseurs automatiques de PM (AMS-PM). Cet exercice met en œuvre un système de dopage de particules, développé par l’Ineris lors d’études précédentes, permettant une distribution homogène de particules pour l’ensemble des instruments participants. La génération de particules est assurée par la nébulisation de sels dissous de sulfate d’ammonium et de nitrate d’ammonium jusqu’à des concentrations de plus de 100 µg/m3. Lors de l’exercice réalisé en octobre 2018 à la station fixe de mesure de la qualité de l’air de « La Faiencerie Creil » d’Atmo Haut-de-France, une seule AASQA (Atmo Grand-Est) a pu se porter candidate avec la mise à disposition de deux TEOM-FDMS 1405-F, deux MP101M+ et un BAM 1020. Etant donné le faible nombre d’instruments mobilisés, les scores de performances (score Z) n’ont pas pu être calculés en utilisant l’approche consensuelle à savoir : l’utilisation de la moyenne robuste des instruments comme valeur de référence ainsi que la dispersion des mesures comme critère de performance. En effet, l’incertitude de mesure de l’ensemble des instruments participants aurait été trop importante. Ainsi, un préleveur Leckel été mis en place par l’INERIS dans le but d’obtenir une mesure de référence pour les PM10, laquelle a été utilisée pour évaluer les résultats des participants. Les biais de chaque analyseur à cette mesure de référence ont été comparés aux exigences réglementaires à savoir : 25% d’incertitude élargie à la concentration définie pour la valeur limite (VL) journalière (50µg/m3). Ce pourcentage a ensuite été pris comme critère de performance pour l’ensemble des niveaux de concentration de la CIL. L’estimation des scores de performances des analyseurs automatiques de cette étude obtenus ainsi montre que ces derniers respectent, en moyenne pour chaque niveau de concentration étudié entre 15 et 150µg/m3, les exigences de la Directive européenne en termes d’incertitude.
Vendredi 12 mars 2021
Rapport
CAPT'AIR : La base de données nationale pour le recensement des expérimentations de capteurs / systèmes capteurs
L’ensemble des éléments issus de l’état de l’art associés aux retours d’expérience des Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) et du Laboratoire Central de Surveillance de la Qualité de l’Air (LCSQA) ou tirés de la littérature en matière d’utilisation de capteurs ou systèmes capteurs pour les mesures de qualité de l’air ont servi de base au développement d’un nouvel outil informatique dénommé « Capt’Air », disponible à l’adresse suivante : https://captair-lcsqa.fr/. Cette base de données a pour objectifs d’accélérer et d’organiser le partage d’informations sur les capteurs / systèmes capteurs et leurs usages en France et à l’international, afin de permettre aux utilisateurs de sélectionner les capteurs ou les types de capteur / systèmes capteurs adaptés à un usage prédéfini. Elle répertorie, pour des dispositifs disponibles sur le marché, des caractéristiques techniques issues des spécifications constructeurs  (références fabricant, type d’élément sensible, variables mesurées, taille, poids, mode de transmission des données, etc.), mais aussi des performances techniques obtenues par des expérimentateurs pour un polluant donné et dans un contexte d’utilisation spécifique (campagnes de terrain, qualifications en laboratoire et sur site, cartographies à partir de moyens mobiles, etc.). L’outil Capt’Air est actuellement réservé aux AASQA, au ministère chargé de l’environnement et au LCSQA, mais pourrait être accessible à terme, aux institutions intéressées par les retours d’expérience sur l’utilisation des micro-capteurs.     Capt’Air: French IT tool for census of  information on air quality sensors and their uses   characteristics taken from technical specifications of systems currently available on the market (manufacturer references, type of sensor elements, measurand, size, weight, data transmission mode, etc.), but also technical performances by pollutant for a specific use as reported by users (field campaigns, laboratory and field qualifications, mapping with mobile measurements, etc.). The tool Capt’Air is currently restricted for French AQ monitoring networks (AASQA), the Ministry of the Environment and the French national reference laboratory (LCSQA), but could eventually be accessible to other institutions interested in having information on the use of sensors.
Jeudi 15 avril 2021
Rapport
AASQA concernées par une stratégie nationale de surveillance des polluants réglementés
Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 18 mars 2021. Mise en application : 18 mars 2021
Mardi 13 mai 2014
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques  gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ». Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations demesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-MD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3. Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2), d’oxydes d'azote (NO/NOx), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons de benzène, toluène, éthylbenzène et o,m,p-xylène (BTEX) de l’ensemble des AASQA, car au vu du nombre relativement faible de bouteilles de BTEX utilisées par les AASQA, il a été décidé en concertation avec le MEDDE qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux.Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2013 par le LCSQA-LNE lors des raccordements des polluants gazeux, à savoir :  Les problèmes rencontrés sur les matériels du LCSQA-LNE,  Les problèmes rencontrés au niveau des raccordements,  Les problèmes rencontrés au niveau du transport des matériels.   Concernant la mesure des particules, le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-MD dans le cas des particules est donné dans le présent rapport. Il convient de rappeler que la chaîne d’étalonnage nationale ne concernant que les polluants atmosphériques gazeux (SO2, NO, NO2, CO, O3 et BTEX), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10 et PM2.5 sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne. Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage et la linéarité de leurs appareils directement en station de mesure, en y associant le débit de prélèvement. Pour l’année 2013, 12 mises à disposition ont été effectuées. Le respect de la consigne pour le débit de prélèvement est globalement constaté (moyenne de valeur absolue d’écart de 0,70 ± 0,35% pour 49 appareils vérifiés (dont 34 FDMS, 1405-F ou DF) soit environ 7 % du parc d’analyseurs automatiques actuellement en station de mesure). Les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA (MVAE) varie entre 0,65 et 1,07% (soit pour l’ensemble des AASQAcontrôlées une moyenne ± écart-type de 0,90 ± 0,16%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre -2,05 et +2,48 % pour 85 appareils contrôlés (dont 61 FDMS, 1405-F ou DF) (soit environ 13% du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement des appareils sur ce paramètre, que ce soit en configuration en continu (TEOM 50°C) ou séquentiell e (avec le module 8500, en version 1504-F ou DF): le coefficient de régression moyen R2 varie de 0,9998 à 1, la pente et l’ordonnée à l’origine moyennes de la droite de régression varient respectivement de 0,9797 à 1,0031 et de – 18 à + 113, sachant que 33appareils (dont 25 FDMS ou 1405-F) ont été contrôlés sur ce paramètre (soit environ 5% du parc de microbalances TEOM actuellement en station de mesure). Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-MD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. L’évaluation de cale d’ATMO Franche Comté a été faite sur l’appareil de référence du LCSQA-MD, préalablement étalonné et contrôlé par un couple de cales spécifiques a donné des résultats satisfaisants : l’écart constaté a été de –2,6% sur la cale contrôlée (par rapport à la valeur annoncée par le fabricant) et de –1,5% par rapport à la valeur obtenue lors du précédent raccordement effectué par le LCSQA-MD en 2012 (montrant la stabilité de ce type d’instrument).Comme pour la microbalance, le contrôle de la linéarité montre l’excellent comportement des jauges sur ce paramètre : le coefficient de régression moyen R2 est de 1, la pente et l’ordonnée à l’origine moyennes de ladroite de régression varient respectivement de 1 à 1,05 et de – 22 à +1,3, sachant que 4 appareils ont été contrôlés sur ce paramètre (soit environ 3% du parc de jauges MP101M actuellement en station de mesure). Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-MD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA dans le cadre de la coordination technique du Dispositif National de Surveillance de la Qualité de l’Air. L’extension des essais à la jauge radiométrique BAM 1020 de la marque Met One est actuellement en cours de mise en place mais pose des difficultés techniques et organisationnelles dans la mesure où la configuration technique de l’appareil diffère fortement de la jauge MP101M. Ceci nécessite des modalités de mise à disposition de cales totalement différentes de celles actuellement adoptées et un mode opératoire spécifique qui devra être testé avec quelques AASQA volontaires avant d’être généralisé à tout le dispositif.