Résultats de la recherche

362 résultats correspondent à AASQA
Lundi 2 février 2015
Rapport
Recensement des méthodes de cartographie utilisées dans les AASQA - Bilan au 31 décembre 2013 (note_technique)
Le LCSQA a été chargé de développer, en collaboration avec les AASQA, une approche harmonisée permettant d’estimer l’exposition des populations à des dépassements de seuils réglementaires. Afin d’orienter ce travail, un recensement préalable des méthodes de cartographie et de croisement avec la population a été réalisé auprès des AASQA. Vingt-quatre AASQA ont répondu à un questionnaire qui leur a été envoyé au début de l’année 2013. Cette note présente le bilan des réponses obtenues.
Jeudi 14 octobre 2021
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2015-2019
  L’article 27 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA effectue le suivi du coût total du dispositif national de surveillance de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif depuis 2015. Le financement total du dispositif national de surveillance de la qualité de l’air s’élève en 2019 à 73,1 M€ (Tableau 1). Le financement du dispositif présente une hausse de 2,8% sur la période 2015-2019. En 2019, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions à hauteur de 33,9% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 34,1%. Le financement des AASQA représente 92,3% du financement total de la surveillance de la qualité de l’air en moyenne sur la période 2015-2019 et est en augmentation depuis 2015 (4,6%). Le financement du LCSQA représente 7,2% du total en moyenne sur la période 2015-2019 et est en baisse depuis 2015 (-14,1%) Le financement de la mise en œuvre opérationnelle du système Prev’Air est de 349 k€ en moyenne sur la période 2015-2019 et représente 0,5% du financement total de la surveillance de la qualité de l’air entre 2015 et 2019.     2015 (€) 2016 (€) 2017 (€) 2018 (€) 2019 (€)   Total Etat 25 200 455 23 566 875 24 162 990 23 870 740 24 714 520   Total dons TGAP 27 373 493 25 612 490 26 815 066 25 753 175 24 946 522   Total collectivités 14 421 871 13 747 972 15 053 252 15 519 739 15 496 878   Contribution entreprises 2 307 966 3 014 662 2 166 038 1 623 188 3 452 094   Total autres 1 367 130 2 001 262 15 372 530 3 349 905 3 482 426   Etudes et activités annexes 369 329 919 365 980 575 862 017 958 337   Total financement de la qualité de l'air 71 040 244 68 862 626 84 550 451 70 978 764 73 050 777 Financement total du dispositif national de surveillance de la qualité de l’air pour les 5 derniers exercices clos.
Vendredi 14 avril 2017
Rapport
Instrumentation 2015 - Synthèse de l’assistance aux AASQA
  Les normes CEN sur le mesurage des gaz CO, SO2, O3 et NOx de 2012/2013 exigent que le test métrologique de répétabilité soit réalisé sur site en même temps que les étalonnages. Pour répondre à cette contrainte, le LCSQA a fourni courant 2014, à la demande des AASQA, un logiciel de répétabilité sur site. Ce logiciel permet de se connecter aux stations d’acquisition pour suivre les mesures et réaliser le test de répétabilité lors des étalonnages. En 2015, le LCSQA a livré une deuxième version du logiciel aux AASQA et a poursuivi les travaux d’assistance technique et de maintenance de l’outil.   En savoir plus : Lire le rapport de synthèse instrumentation 2013-2014
Mercredi 11 mars 2020
Rapport
Maintien et amélioration des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité et de développer des étalons de référence pour de nouveaux polluants. La première partie a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien de la chaîne nationale de traçabilité métrologique » de décembre 2019. La deuxième partie a porté sur l’amélioration de la méthode de fabrication gravimétrique des mélanges gazeux de référence en bouteille. Pour les composés NO, CO et BTEX (benzène, toluène, éthylbenzène et xylènes), les étalons de référence sont des mélanges gazeux de référence en bouteille (quelques µmol/mol à quelques centaines de µmol/mol) appelés également Matériaux de Référence Certifiés (MRC) qui sont préparés par le LCSQA-LNE par la méthode gravimétrique selon la norme ISO 6142-1 : ces mélanges gazeux sont ensuite dilués par voie dynamique pour étalonner les mélanges gazeux utilisés par les AASQA. La rampe de fabrication utilisée par le LCSQA-LNE ayant été mise en place il y a une vingtaine d’années, il devenait nécessaire de la remplacer par un système plus performant (changement des capteurs de pression, ciblage de la masse avec une balance…), afin d’améliorer la qualité des mélanges gazeux de référence et de diminuer le temps de fabrication. L’objectif de cette étude était donc de développer et de valider une nouvelle rampe de fabrication des mélanges gazeux de référence. Fin 2017, un schéma d’une nouvelle rampe a été réalisé (filtration, ciblage, alimentation en gaz purs…). Au cours de l’année 2018, de nombreuses discussions ont eu lieu avec le fournisseur pour affiner le schéma de la rampe de fabrication, le cahier des charges ainsi que le devis. La nouvelle rampe pour la production de matériaux de références certifiés a été réceptionnée en juin 2019 au LCSQA-LNE. Elle est flexible d’utilisation avec quatre arrivées de gaz azote et quatre d’air permettant un remplissage en pression des bouteilles plus aisé, une possibilité d’injecter les composés liquides purs, avec une voie dédiée à l’injection des mélanges gazeux ayant des fractions molaires élevées. Les raccords sont en VCR avec des traitements de surface Sulfinert® afin de limiter au maximum les adsorptions des molécules d’intérêt. La mise en place de deux filtres SAES GETTERS® (un pour l’azote et un pour l’air) sur la rampe permet d’obtenir des fractions molaires d’impuretés (vapeur d’eau, oxygène…) très faibles (quelques nmol/mol) limitant ainsi les réactions parasites de ces impuretés avec les molécules d’intérêt (ex : réaction entre NO et O2 ; réaction de NO2 avec H2O). L’instrumentation de la rampe avec un analyseur de vapeur d’eau (CRDS HALO KA) permet de suivre le niveau de vapeur d’eau en continu et de pouvoir produire des MRC lorsque la fraction molaire mesurée de vapeur d’eau est suffisamment faible pour éliminer toute réaction non désirée. Elle a été ensuite optimisée notamment en changeant certaines vannes défectueuses ou inadaptées à notre utilisation. Six mélanges gazeux ont été produits avec cette nouvelle rampe et ont été analysés par rapport à d’autres MRC (laboratoire national de métrologie en Angleterre - NPL). Les essais ont démontré la justesse des mélanges gazeux préparés, validant ainsi dans son ensemble la rampe de production des MRC. Les résultats obtenus au cours de cette étude montrent donc que la nouvelle rampe de fabrication des MRC du LCSQA-LNE est opérationnelle, fonctionnelle et exempte de fuites. Elle sera utilisée à l’avenir pour la fabrication des mélanges gazeux nécessaires pour le raccordement des étalons des AASQA (cf. Rapport LCSQA « Maintien de la chaîne nationale de traçabilité métrologique » de décembre 2019).
Mercredi 4 mai 2011
Rapport
Maintien et amélioration des chaînes nationales d'étalonnage
Au sein du LCSQA, le LCSQA-LNE maintient des chaînes nationales d’étalonnage pour que les mesures de polluants gazeux effectués en stations de mesure soient raccordées aux étalons de référence  par  l'intermédiaire  d'une  chaîne  ininterrompue  de  comparaisons, ce  qui  permet d’assurer la traçabilité des mesures aux étalons de référence.  Ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 7) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.Ces chaînes nationales d’étalonnage concernent le dioxyde de soufre (SO 2 ), les oxydes d'azote (NO/NO x ), l'ozone (O 3 ) et le monoxyde de carbone (CO).Dans  ce  cadre,  les  étalons  de  transfert  1-2  de  chaque  laboratoire  d’étalonnage  sont raccordés par le LCSQA-LNE tous les 3 mois. De  plus,  le  LCSQA-LNE  est  également  mandaté  pour  réaliser  le  raccordement  direct  des étalons  BTX  utilisés  par  les  Associations  Agréées  de  Surveillance  de  la Qualité  de  l'Air (AASQA), car vu le nombre de bouteilles de BTX utilisées par les AASQA qui reste relativement faible, il a été décidé en concertation avec le MEDDTL et l’ADEME qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux.  Cette étude a donc pour objectifs : - De  faire  le  point  sur  les  étalonnages  effectués  par  le  LCSQA-LNE  pour  les  différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2 , SO2 , O3 , CO, BTX et Air zéro) en 2010. - De faire une synthèse des problèmes techniques rencontrés en 2010 par le LCSQA-LNE lors des raccordements. - D'exposer  les  différentes  phases  de  l’automatisation  des  étalonnages  pour  le  SO2, cette automatisation ayant pour objectif de s’affranchir  de  certaines  étapes  des  procédures actuellement mises en oeuvre pouvant être à l’origine de sources d’erreurs.   - De faire le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules. En effet, étant donné que la chaîne d’étalonnage nationale ne concerne que les polluants atmosphériques gazeux (SO2, NO, NO2, CO et O3), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10  et PM 2.5  sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne.Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage, la linéarité et le débit de prélèvement de leurs appareils directement  en  station  de  mesure.  Pour  l’année  2010,  15  mises  à  disposition  ont  été effectuées. Le  respect  de  la  consigne  pour  le  débit  de  prélèvement  est  globalement  constaté  pour  51 appareils  vérifiés  dont  6  FDMS  (soit  environ  10  %  du  parc  d’analyseurs  automatiques actuellement  en  station  de  mesure)  et  les  essais  montrent  un  comportement  correct  de l’ensemble des appareils contrôlés.   Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,34 et 1,22% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,9 ± 0,32%). L’étendue de l’écart réel constaté  sur  le  terrain  est  restreinte  car  comprise  entre  0,04  et  +3,26  %  pour  56  appareils contrôlés dont 11 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le  contrôle  de  la  linéarité  montre  l’excellent  comportement  des  appareils  sur  ce  paramètre sachant  que  52  appareils  (dont  6  FDMS)  ont  été  contrôlés  soit  environ  11%  du  parc  de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle de la linéarité montre l’excellent comportement des jauges sur ce paramètre sachant que 6 appareils ont été contrôlés soit environ 9% du parc de jauges actuellement en station de mesure. Enfin un bilan de la « chaîne de contrôle pour la mesure des particules » mise en place par le LCSQA-EMD a été effectué aux Journées Techniques des AASQA les 12 au 14 octobre 2010 à Orléans dans le cadre de l’atelier sur la thématique « Chaîne nationale d’étalonnage : bilan &  perspectives ».  Cet  outil  simple  à  mettre  en  œuvre  est  globalement  apprécié  par  les usagers. Le comportement de cette « chaîne de contrôle pour la mesure des particules » mise en place par  le  LCSQA-EMD  peut  être  qualifié  de  satisfaisant.  Les  résultats  obtenus  pour  les microbalances  TEOM  (concernant  les  paramètres  débit  de  prélèvement,  étalonnage  et linéarité)  et  pour  les  radiomètres  bêta  MP101M  (concernant  le  contrôle  de  moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée  aux  analyseurs  automatiques  de  particules  en  suspension  et  sont  des  sources d’information  nécessaires  dans  le  cadre  du  calcul  de  l’incertitude  de  mesure  sur  ce  type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA.
Jeudi 23 mai 2013
Rapport
Surveillance des métaux dans les particules en suspension
La plupart des AASQA effectuent depuis 2007 de façon continue ou ponctuelle, l’évaluation ou la surveillance du Pb, As, Cd et Ni dans les PM10 en réponse aux directives européennes (2008/50/CE et 2004/107/CE). Les objectifs de l'Ecole des Mines de Douai, au sein du LCSQA, sont d'assurer un rôle deconseil et de transfert de connaissances auprès des AASQA, de procéder à des travauxpermettant de garantir la qualité des résultats, de participer activement aux travaux denormalisation européens et de réaliser une veille technologique sur les nouvelles méthodes deprélèvement et d’analyse susceptibles d’optimiser les coûts. Au cours de l'année 2012, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes :  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurscaractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur simpledemande de leur part. En 2012, 5400 filtres en fibre de quartz (Pall et Whatman) ont étédistribués auprès de 17 AASQA différentes.  Participation au comité de suivi « Benzène, métaux, HAP » faisant suite au GT « 4ième directive européenne » : nouveaux polluants » sur la stratégie de mesure de As, Cd, Ni, Pbdans l’air ambiant.  Bilan des mesures de métaux dans les PM10 issues de l’évaluation ou de la surveillanceeffectué par les AASQA entre 2005 et 2011. Toutes les AASQA (sauf ORA Guyane) ont mises en oeuvre une évaluation préliminaire des teneurs en métaux réglementés sur leur territoire.Près de 162 sites ont été évalués par l’intermédiaire de mesure indicatives (14% du temps) ou fixes (50 à 100% du temps) sur sites urbains/périurbains (83 sites), industriels (61), trafics (13)ou ruraux (10). Aucun dépassement de seuil en moyenne annuelle n’a été observé surl’ensemble des stations mais certains échantillons individuels ont des valeurs en As, Cd, Ni ouPb qui excédent les SEI, SES ou valeurs cibles, notamment en proximité de sites industriels. La cartographie fait apparaitre certaines zones géographiques n’ayant pas encore étéévaluées et met en évidence celles potentiellement à risques de dépassement.  Analyse des métaux réglementés (As, Cd, Ni et Pb) et autres métaux (Co, Cr, Cu, Mn, V,Zn) sur des filtres de référence produit par le LNE en appliquant la Norme EN 14902 : 2005lors d’analyses effectuées par ICP-MS afin dévaluer les contraintes liés à ce type de MRC et la variabilité des mesures.  Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10collectés dans le cadre du programme CARA à Lens pendant une année. L’application detraitement statistique (ACP) et de modèles source-récepteur a permis l’identification desprincipales sources de particules affectant la zone (Aérosols secondaires, combustion debiomasse, trafic automobile, aérosol marin, poussières détritiques, …).
Mercredi 16 septembre 2020
Rapport
Performances Prev’air en 2017 et 2018
Ce rapport synthétise l’ensemble des actions menées dans le cadre de la plateforme Prev’Air (www.PrevAir.org) pour répondre aux besoins des AASQA (associations agréées de surveillance de la qualité de l’air). Cela concerne les développements visant aussi bien à étendre les capacités du système de prévision qu’à rendre ses performances plus élevées. La première partie du rapport fournit une estimation du comportement général des outils via des indicateurs statistiques classiques permettant de comparer les résultats de modélisation aux observations validées de la base de données nationale alimentée par les AASQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des épisodes de pollution. Cet exercice a pour objectif de répondre à un souci de transparence sur les aptitudes des modèles à prévoir et à estimer la qualité de l'air. Ce rapport traite de l’ozone pour les étés 2017 et 2018 et des particules pour les années 2017 (à partir d’avril) et 2018 en France métropolitaine. A noter que cette évaluation porte sur des calculs nouvelle génération mis en place sur Prev’Air depuis avril 2017 incluant la haute résolution. En effet, lors de la migration du système sur une nouvelle plateforme de calcul haute performance (à Météo France), de nombreuses modifications ont été opérées sur le système, dont un changement de version de CHIMERE et la mise à jour des post-traitements (incluant les procédures d’adaptation statistique). L’évaluation des épisodes est effectuée dans un premier temps sur les prévisions brutes de Prev’Air et montre une discontinuité avec les années passées pouvant s’expliquer par les changements de version des outils. Ensuite, elle est réalisée sur les calculs de l’adaptation statistique, processus correctif reposant sur les prévisions brutes et mis en place pour accroitre la performance des prévisions. Les gains résident dans la capacité du modèle statistique à corriger le biais sur les concentrations lors des épisodes. Ce rapport intègre pour la première fois des évaluations pour les régions et départements d’outre-mer car un système de prévision de la qualité de l’air dédié à ces zones (appelé Prev’Air DROM) est entré en production au premier trimestre 2018 avec une configuration très proche de celle de la prévision de Prev’Air en métropole. Le système Prev’Air DROM comporte un grand domaine sur l’Atlantique Ouest et trois petits domaines pour inclure la Guyane, Martinique et Guadeloupe. L’évaluation porte essentiellement sur les PM10 car les DROMs sont fréquemment exposés à l’arrivée de poussières désertiques de grosse taille transportées à travers l’océan Atlantique à partir du Sahara.
Mercredi 16 septembre 2020
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2014-2018
L’article 27 de l’arrêté du 19 avril 2017 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA est tenu d’« effectuer le suivi du coût de la mise en œuvre de la surveillance » de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif, sur les 5 dernières années. En 2018, le financement du dispositif national de surveillance de la qualité de l’air est de 71M€, ce qui représente une augmentation de 1% sur 5 ans. De plus, en 2018 l’Etat finance directement, par des subventions, le dispositif national de surveillance de la qualité de l’air à hauteur de 33,6% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 36,3%. Le financement des AASQA représente 91,8% du financement total de la surveillance de la qualité de l’air sur la période, en augmentation sur 5 ans, passant de 90,1% en 2014 à 92,3% du financement total en 2018. En 5 ans, les financements des AASQA ont augmenté de 3,5% passant de 63,3M€ en 2014 à 65,5M€ en 2018. Les financements du LCSQA représentent 7,7% sur la période ; ils sont en baisse sur 5 ans passant de 9,4% du financement total du dispositif en 2014 à 7,3% en 2018. La baisse est de 21% depuis 2014. Le financement de la mise en œuvre opérationnelle de la plate-forme Prev’Air est en baisse de 29% sur 5 ans, passant de 400k€ en 2014 à 284k€ en 2018. De par sa structure et son mode de financement, seul le coût de mise en œuvre opérationnelle du système Prev’Air, hors travaux de développement scientifique, peut être estimé aisément. Le financement de la mise en œuvre opérationnelle de Prev’Air représente 0,5% du financement total de la surveillance de la qualité de l’Air sur la période.
Jeudi 15 avril 2021
Rapport
Guide : Recommandation QA/QC pour la surveillance du mercure gazeux dans l’air ambiant
  Référentiel technique national Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air. Il a été approuvé en CPS (comité de pilotage de la surveillance) du 18 mars 2021. Mise en application : 18 mars 2021     La directive européenne 2004/107/CE du 15 décembre 2004 préconise la mise en place dans les états membres d’une surveillance du mercure dans l’air ambiant. En complément des exigences réglementaires européennes, la circulaire du ministère de l’environnement en date du 23 mars 2009 à destination des préfectures concernées demande la réalisation de campagnes de mesures au voisinage d’industries de production de chlore. Contrairement aux autres polluants de la directive européenne 2004/107/CE, le mercure ne dispose pas de seuil réglementaire (valeurs cible). Par ailleurs, les travaux de normalisation réalisés par le CEN (Comité Européen de Normalisation) ont abouti en 2010 à la publication de normes décrivant les méthodes à employer pour la mesure du mercure gazeux total (NF EN 15852) et des dépôts de mercure dans l’air ambiant (NF EN 15853). Deux types d’analyseurs sont disponibles et utilisés par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) pour la mesure du mercure gazeux total. L’analyseur Tekran 2537 est utilisé presque exclusivement en surveillance dans des environnements industriels (chimie du chlore, incinération), dans des zones habitées très proches des industries concernées et pouvant être impactées par les retombées régulières ou ponctuelles. Les concentrations rencontrées sont très variables mais peuvent être élevées, approchant ou dépassant 30 ng.m-3 en moyenne annuelle, et plus de 1000 ng.m-3 en valeur horaire. L’analyseur peut également être utilisé lors de campagnes qui peuvent être de longue durée (étude d’impacts entre autres) pour lesquelles les niveaux de concentrations sont plus faibles, de l’ordre de quelques ng.m-3. L’analyseur Lumex RA 915 AM a jusqu’à maintenant été utilisé pour la surveillance en site (péri)urbain ou rural sous influence industrielle pour lesquels les valeurs moyennes horaires maximales mesurées étaient de l’ordre de 230 ng.m-3. Il est aussi mis en œuvre pour la surveillance de sites industriels chloriers. Aucune utilisation pour des mesures en site urbain/ rural sous influence de fond n’a été rapportée. Ce guide a pour objectif de définir l’ensemble des recommandations (installation, contrôles, fonctionnement, maintenance, expression des données) à mettre en œuvre pour harmoniser et assurer la qualité des mesures de mercure gazeux réalisées à l’aide des analyseurs Lumex RA 915 AM et des analyseurs Tekran 2537 dans l’air ambiant. En l’absence de procédures de contrôles précises dans la norme NF EN 15852 (2010), des tests métrologiques simplifiés destinés à préciser les caractéristiques métrologiques des appareils ont été définis en s’inspirant de ceux habituellement mis en œuvre pour les analyseurs de polluants gazeux inorganiques classiques. Ainsi, ces contrôles portant sur la linéarité, la limite de détection, la répétabilité et la dérive sur 7 jours sont réalisables par le LCSQA/Ineris qui dispose d’un générateur de mercure basse concentration raccordé aux étalons internationaux. Par ailleurs, l’analyseur de mercure Lumex RA 915 AM doit être étalonné annuellement chez le constructeur en utilisant des solutions SRM (Standard Reference Materials) alors que l’ajustage de la source interne de l’analyseur Tekran peut être réalisé par l’utilisateur en intervenant sur le débit de perméation de la source. QA/QC recommendation for gaseous mercury monitoring in ambiant air The EU Directive 2004/107/EC of 15 December 2004 calls for the establishment of gaseous mercury monitoring in ambient air in states members. In addition to European regulatory requirements, the Ministry of the Environment's circular dated 23 March 2009 to the relevant prefectures calls for measurement campaigns to be carried out in the vicinity of chlorine production industries. Unlike the other pollutants in the 2004/107/EC EUROPEAN Directive, mercury does not have a regulatory threshold (target values). In addition, standardization work carried out by the European Standards Committee (NEC) in 2010 resulted in the publication of standards outlining the methods to be used for measuring total gaseous mercury (NF EN 15852) and mercury deposits in the ambient air (NF EN 15853). Two types of analyzers are available and used by the Air Quality Monitoring Associations (AASQA) for the measurement of total gaseous mercury. The Tekran 2537 analyzer is used almost exclusively for monitoring in industrial environments (chlorine chemistry, incineration), in inhabited areas close to the concerned industries and which may be impacted by regular or one-off impacts. The concentrations encountered are highly variable but can be high, approaching or exceeding 30 ng.m-3 on an annual average, and more than 1000 ng.m-3 in hourly value. The analyzer can also be used in campaigns that can be long-lasting (impact study among others) for which concentrations are lower, in the order of a few ng.m-3. The Lumex RA 915 AM analyzer has so far been used for (peri)urban or rural site surveillance under industrial influence for which the maximum average hourly values measured were in the range of 230 ng.m-3. It is also implemented for the monitoring of industrial chlorinator sites. No use for urban/rural site measurements under background influence has been reported. The objective of this guide is to define all the recommendations (installation, controls, operating, maintenance, data expression) to be implemented to harmonize and ensure the quality of gaseous mercury measurements made using Lumex RA 915 AM analyzers and Tekran 2537 analyzers in the ambient air. In the absence of specific control procedures in the NF EN 15852 (2010) standard, simplified metrological tests to clarify the metrological characteristics of the devices have been defined based on those usually used for conventional inorganic gas pollutant analyzers. Thus, these controls on linearity, detection limit, repeatability and 7-day drift are achievable by the LCSQA/Ineris, which has a low-concentration mercury generator connected to the international standards.  
Mercredi 10 février 2016
Rapport
Surveillance des métaux dans les particules en suspension
Depuis 2007, une surveillance est effectuée par l’ensemble des AASQA de façon continue ou ponctuelle, pour le Pb, As, Cd et Ni dans les PM10 en accord avec les directives européennes (2008/50/CE et 2004/107/CE modifié par la 2015/1480/CE). Les objectifs de Mines Douai, au sein du LCSQA, sont : - d'assurer un rôle de conseil et de transfert de connaissances auprès des AASQA, - de procéder à des travaux permettant de garantir la qualité des résultats, - de participer activement aux travaux de normalisation européens (WG14, WG20, WG44), - de réaliser une veille technologique sur les nouvelles méthodes de prélèvement et d’analyse susceptibles d’optimiser les coûts tout en respectant les objectifs de qualité, - de participer à la valorisation des activités de surveillance et des études menées en collaborations avec les AASQA. Au cours de l'année 2015, les travaux réalisés dans le cadre du LCSQA ont porté sur les actions suivantes :  Fourniture de filtres vierges en fibre de quartz. Des filtres sont achetés par lots et leurs caractéristiques chimiques sont contrôlées, avant d’être redistribués aux AASQA sur simple demande de leur part. En 2015, à ce jour, 2825 filtres en fibre de quartz (Pall et        Whatman) ont été distribués auprès de 16 AASQA différentes. Participation au comité de suivi « Benzène, métaux, HAP » sur la stratégie de mesure de As, Cd, Ni, Pb dans l’air ambiant, au groupe de travail « Caractérisation chimique et sources des PM » et au groupe de travail « Référentiel constituant ».  Organisation d'un exercice de comparaison inter-laboratoires (rapport CIL métaux 2015). Cette année, 9 laboratoires indépendants ont participé à cet exercice : Laboratoire Carso (Lyon), Ianesco Chimie (Poitiers), Laboratoire départemental de Haute-Garonne        (Launaguet), Laboratoire de Rouen (Rouen), Micropolluants Technologie (Thionville), Laboratoires des Pyrénées et des Landes (Lagor), TERA Environnement (Crolles), INERIS (Creil) et LUBW (Allemagne).  Analyse des métaux, métalloïdes et éléments majeurs dans des échantillons de PM10 collectés dans le cadre du programme CARA à Nogent sur Oise, Lens, Rouen, Roubaix et Revin (MERA) pendant l’année 2014. L’application de traitement statistique (ACP) et de        modèles source-récepteur (PMF) doit permettre l’identification des principales sources de particules affectant la zone (site récepteur) et leurs contributions relatives à la masse des PM10 (Aérosols inorganiques secondaires, combustion de biomasse ou de fuel lourd, trafic        automobile, aérosols marins, poussières détritiques, industrie …).