Résultats de la recherche

568 résultats correspondent à INERIS
Lundi 12 mai 2014
Rapport
Surveillance du benzène
Conformément aux exigences de la Directive Européenne 2008/50/CE [1], certaines Associations Agréées de Surveillance de la Qualité de l’Air (AASQA) réalisent des prélèvements de benzène par pompage sur tubes à l’aide de préleveurs depuis déjà quelques années, d’autres ont commencé à s’équiper au cours de l’année 2009. Dans ce contexte, l’INERIS accompagne les AASQA lors de l’équipement et la mise en oeuvre de préleveurs actifs en les conseillant sur l’application du guide de recommandations rédigé dans le cadre du GT benzène (mesure de débit, d’installation des tubes, précautions analytiques), assurant le lien entre constructeurs et utilisateurs, prospectant continuellement afin d’identifier de nouvelles techniques, suivant la construction de préleveurs « faits maison » au sein de certains réseaux, de plus en plus nombreux à se lancer dans cette voie. Au cours des discussions menées en 2010 dans le cadre de rencontres techniques (journée organisée par AIRPARIF) et de la commission de suivi benzène-HAP-métaux, il a été décidé de limiter le nombre de modèles de préleveurs développés à trois maximum en respectant les exigences de la Directive, du guide technique de recommandations [2] rédigé dans le cadre du GT benzène et de la norme NF EN 14662-1. À partir de 2014, un cahier des charges sera mis à disposition des AASQA pour la mise au point des préleveurs comprenant entre autre l’ensemble des recommandations. En 2011, des préleveurs « faits maison » et commerciaux ont fait l’objet de l’évaluation de leurs niveaux de blanc et de performance lors d’essais en chambre d’exposition [4]. En 2012, afin de compléter les travaux en atmosphère simulée, des essais sur le site trafic Auteuil d’AIRPARIF ont été réalisés en utilisant les préleveurs mis au point par Air LR, Air Breihz et AirAQ et le SYPAC V2 de TERA Environnement. À l’exception du SYPAC, dont le logiciel a montré des dysfonctionnements, l’ensemble des préleveurs a présenté des résultats satisfaisants [6]. En 2013, de nouveaux essais en atmosphère réelle ont été réalisés. Quatre préleveurs, deux « faits maison » par ATMOSF’Air Bourgogne et Air Lorraine, ainsi que deux commerciaux SYPAC de TERA Environnement, ont fait l’objet de l’évaluation de leur fiabilité pendant sept semaines sur le site industriel de Feyzin. Cette campagne de validation sur le terrain n’a pas eu les résultats que l’on pouvait attendre, par rapport à la campagne menée en 2012 en atmosphère réelle et au cours de laquelle les valeurs d’incertitude d’un préleveur étaient conformes aux exigences de la norme. Les écarts observés sur les résultats de concentration de benzène de chaque préleveur n’ont pas permis d’identifier la source de ces divergences qui se sont produites au cours de cet exercice d’intercomparaison. Par ailleurs, il semble difficile de trouver une explication à ces écarts, dans la mesure où des essais métrologiques visant à vérifier le bon fonctionnement du préleveur avant l’installation sur site n’ont pas été réalisés. Par contre, cette vérification sera exigée à partir de la prochaine campagne d’intercomparaisons de mesures des préleveurs benzène.   1. Directive européenne 2008/50/CE, DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on ambient air quality and cleaner air for Europe Disponible sur : http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:FR:PDF, 2008. 2. Guide de recommandation, et al., Guide technique de recommandation concernant la mesure du benzène en air ambiant. 2009. Disponible sur http://pro-lcsqa2.lcsqa.org/fr/rapport/2009/emd-ineris/mesure-benzene-guide-technique-recommandations-concernant-mesure-benzene-air. 4. Rapport LCSQA, L. Chiappini, and S. Fable, Surveillance du benzène 1/3: surveillance du benzène par échantillonnage actif, application de la norme 14662-1. 2011. Disponible sur : http://pro-lcsqa2.lcsqa.org/fr/rapport/2011/ineris/surveillance-benzene. 6. Rapport LCSQA, L. Chiappini, and S. Fable, Surveillance du benzène 1/3: surveillance du benzène par échantillonnage actif, application de la norme 14662-1. 2012. Disponible sur : http://pro-lcsqa2.lcsqa.org/fr/rapport/2012/ineris/surveillance-benzene.
Jeudi 13 octobre 2022
Rapport
Rapport d'activité LCSQA 2020-2021
Après une première partie retraçant les faits marquants sur la période 2020-2021, le rapport d'activité présente l'ensemble des démarches mises en œuvre et les actions réalisées pour assurer la coordination du dispositif français de surveillance de la qualité de l'air selon les quatre principales orientations décrites dans le contrat de performance 2016-2021 signé avec le ministère de la transition écologique : Assurer la qualité des données de l’observatoire et les adéquations avec les exigences européennes et les besoins de surveillance Assurer la centralisation au niveau national, l’exploitation et la mise à disposition des données produites par le dispositif de surveillance Améliorer les connaissances scientifiques et techniques du dispositif pour accompagner la mise en œuvre des plans d’action et anticiper les enjeux futurs du dispositif Assurer la coordination, l’animation et le suivi du dispositif national de surveillance Le rapport s'achève sur la présentation de l'organisation du LCSQA ainsi que des principaux chiffres clés, des indicateurs et jalons prioritaires. Notons que 2021 constitue une étape finale dans la réalisation des objectifs fixés dans le contrat de performance du LCSQA 2016-2021 et dont le bilan est positif au regard des indicateurs retenus. Le LCSQA a pu maintenir sa capacité d’expertise scientifique et technique tout en respectant les obligations définies dans la réglementation, comme la réalisation des audits techniques des AASQA et le maintien et la mise à jour du Référentiel Technique National en produisant des notes stratégiques et des guides méthodologiques. Parmi les principaux sujets traités par le LCSQA en 2020-2021, on peut retenir : En collaboration avec le BQA et les AASQA, l'élaboration d'une stratégie harmonisée de surveillance de la concentration totale en nombre des particules (ultra)fines et la définition d'une stratégie de suivi pérenne des pesticides dans l’air. L’ensemble des travaux du LCSQA concernant les polluants d’intérêt national et émergents (Particules Ultra Fines, potentiel oxydant des particules, 1,3-butadiène, NH3, H2S, pesticides) est décrit dans un dossier technique dédié (publié prochainement) ; La poursuite des travaux sur les systèmes capteurs pour la surveillance de la qualité de l’air avec notamment leur couplage avec des drones et la mise à disposition d’algorithmes « open-source » pour réaliser des cartographies à partir de systèmes capteurs mobiles (SESAM) ; L’ouverture et la valorisation auprès du public des données de qualité de l’air avec la mise en service, en septembre 2021, du nouveau site Geod’air, système national de gestion des données de qualité de l’air ; la poursuite de la collaboration avec le Gouvernement de la Nouvelle Calédonie qui s’est traduite par la fourniture à la Direction de l'Industrie, des Mines et de l'Energie de la Nouvelle-Calédonie de plusieurs guides méthodologiques et notes techniques, en lien avec la publication en janvier 2021 de l'arrêté relatif à l'amélioration de la qualité de l'air. L'accompagnement de Scal’Air (organisme de surveillance de la qualité de l’air en Nouvelle-Calédonie) s'est traduit par la finalisation de la comparaison interlaboratoire concernant la mesure automatique des particules (PM10 et PM2.5), et l’appui technique pour la mise en œuvre de la modélisation à Nouméa.
Mercredi 22 mai 2013
Rapport
Comparaison interlaboratoires sur les Hydrocarbures Aromatiques Polycycliques (HAP) - Rapport final
Dans le cadre de l’assistance aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), un essai de comparaison inter laboratoires analytique a été organisé par le LCSQA (l’INERIS en collaboration avec le LNE) au second semestre 2012. Cet essai portait sur l’analyse du Benzo[a]pyrène ([B[a]P) et des autres HAP concernés par la directive 2004/107/CE du 15 décembre 2004 ainsi que sur le phénanthrène et le fluoranthène. La norme NF EN 155491Chaque participant a reçu les matériaux suivants : étant seulement applicable pour le B[a]P, les laboratoires ont mis en oeuvre leurs propres méthodes analytiques pour les autres HAP, ce qui a permis d’obtenir des informations sur les performances analytiques des laboratoires et sur les améliorations possibles, et au final, de compléter les éléments de comparabilité des données au niveau national. − Trois matériaux de référence certifiés (MRC) préparés par le LNE, constitués de trois solutions étalons notées : Etalon 1, Etalon 2 et Etalon 3, présentant des concentrations différentes ; − Un matériau de référence préparé par le LNE qui consistait en un filtre synthétique dopé par des particules noté Filtre 3 ; − Deux matériaux préparés par l’INERIS à partir d'un prélèvement réel sur membrane en quartz notés : Extrait 1 et Extrait 2 ; − Trois matériaux solides (poinçons de filtre) contenus dans des boîtes de Pétri préparés par l’INERIS et issus de prélèvements réels pour deux d’entre eux, le troisième étant un blanc de terrain. Les prélèvements ont été effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 70 m3/h. Chaque filtre était découpé avec un emporte-pièce en 16 morceaux de 47 mm de diamètre. Trois filtres notés : Filtre 1, Filtre 2 et Filtre 4 ont ainsi été envoyés aux participants. Cet exercice comprenait des matrices de concentrations très différentes afin de prendre en compte les gammes de travail habituelles des laboratoires réalisant l’analyse de filtres issus de prélèvements haut débit ou bas débit. Le traitement statistique robuste des résultats a permis d’identifier une constance des performances des laboratoires dans l’analyse des filtres et des extraits, et toujours un problème pour l’analyse des étalons faiblement concentrés. Par ailleurs, peu de laboratoires participants (5/13) sont aptes à respecter les recommandations du guide national2pour les analyses de HAP concernant le respect des limites de quantification pour le prélèvement bas débit. Les AASQA réalisant de tels prélèvements sont invitées à porter une attention particulière aux performances de leur laboratoire d’analyse. 1 NF EN 15549. Qualité de l’air. Méthode normalisée pour le mesurage de la concentration du benzo[a]pyrène dans l’air ambiant. Juillet 2008. pour les analyses de HAP concernant le respect des limites de quantification pour le prélèvement bas débit. Les AASQA réalisant de tels prélèvements sont invitées à porter une attention particulière aux performances de leur laboratoire d’analyse. 2 LCSQA, Guide méthodologique pour la surveillance des Hydrocarbures Aromatiques Polycycliques (HAP) dans l’air ambiant et dans les dépôts, A.Albinet, 2011.
Mercredi 2 mars 2022
Rapport
Performances Prev’air en 2020
Ce rapport présente les performances des prévisions nationales opérées dans le cadre de la plateforme Prev’Air (www.prevair.org). L’objectif est de montrer en toute transparence des éléments d’appréciation de la qualité de la production Prev’air. Ce rapport traite successivement de l’évaluation des prévisions des concentrations des quatre polluants O3, NO2, PM10 et PM2.5, fournis quotidiennement par le système Prev’Air, du jour courant J jusqu’au J+3. L’estimation du comportement des outils est réalisée grâce à des indicateurs statistiques qui permettent de comparer les résultats de modélisation avec les observations validées de la base de données nationale GEOD’air, elle-même alimentée par les AASQA (associations de surveillance de la qualité de l’air) et développée par le LCSQA. Une attention particulière est portée à l’évaluation des performances de Prev’Air concernant la détection des seuils réglementaires. Cet exercice a pour objectif d’estimer l’aptitude des modèles à prévoir spécifiquement les épisodes de pollution. L’ozone est évalué sur les mois de l’été 2020 (avril à septembre). Les autres polluants (PM10, PM2.5, NO2) sont évalués sur l’ensemble de l’année 2020. L’année 2020 a été marquée par la crise Covid-19 et par les confinements que celle-ci a entraînés au sein des pays de l’Europe, perturbant ainsi les activités humaines habituelles et les émissions de polluants associées. Le système Prev’Air a cependant continué de produire des prévisions sur la base de ses émissions standard, donc sans modulation vis-à-vis de ces perturbations. Notons toutefois que le système Prev’Air bénéficie d’une approche de correction automatique statistique et géostatistique qui repose sur les observations en temps réel, permettant ainsi de prendre en compte indirectement l’effet des confinements. Une prévision opérationnelle complémentaire a été produite à partir de mars 2020, intégrant une estimation de baisse des émissions liée aux mesures de lutte contre la pandémie Covid[1], mais elle ne fait pas l’objet d’une évaluation dans le cadre de ce rapport. Peu d’épisodes persistants d’ampleur nationale ont été relevés sur les périodes étudiées : un pour l’ozone, du 6 au 12 août, et trois pour les PM10, du 21 au 26 janvier (avec dépassement du seuil d’alerte), du 27 au 28 mars, et du 22 au 27 novembre. L’évaluation de ces épisodes est effectuée à la fois sur les prévisions brutes de Prev’Air et sur les calculs de l’adaptation statistique, qui visent à corriger les biais systématiques du modèle brut par un processus d’apprentissage historique. Les gains obtenus par le modèle statistique résident dans sa capacité à corriger les biais de représentativité du modèle brut. Cette prévision corrigée statistiquement sert généralement de référence à l’expertise de l’équipe Prev’air pour la communication en cas d’épisode de pollution de l’air, et sert également de base aux calculs du module AMU, qui vérifie les critères de l’arrêté mesure d’urgence[2]. Les prévisions Prev’Air pour les DROM des caraïbes ont également été évaluées et montrent des performances satisfaisantes. Dans l’ensemble, le comportement de Prev’Air est satisfaisant avec une bonne aptitude à respecter les objectifs de qualité définis dans le référentiel technique national[3] qui a établi ces valeurs cibles pour les différents scores ainsi que le contenu à faire figurer dans les rapports annuels d’évaluation des plateformes de prévisions constituant le dispositif national de surveillance de la qualité de l’air. Les prévisions avec adaptation statistique disponibles sur la métropole respectent les objectifs de performance et ont permis la plupart du temps d’anticiper l’occurrence des épisodes de pollution et d’identifier les principales zones affectées. Les prévisions brutes rencontrent plus de difficultés à satisfaire les objectifs de qualité notamment dans les DROM. La composition des PM1 prévue par Prev’air a été évaluée pour la première fois avec l’aide des données CARA[4].  L’ammonium, les nitrates et les sulfates sont relativement bien prévus par le modèle CHIMERE. La partie organique est fortement sous-estimée. Quant au chlore, une nette amélioration devrait être constatée à partir de fin 2021 avec la mise en place de la nouvelle version de CHIMERE (v2020)   Performances of Prev’air in 2019   This report presents the performance of the national forecasts carried out within the Prev'Air platform (www.prevair.org). The objective is to assess the quality of Prev'air production. This report deals successively with the evaluation of the O3, NO2, PM10 and PM2.5 concentrations forecasts, daily provided by the Prev'Air system, from day D to D+3. The behavior of this system is estimated using conventional statistical indicators, which allow the modelling results to be compared with validated observations from the national GEOD'air database, itself fed by the AASQA (air quality monitoring associations) and developed by the LCSQA. Particular attention is paid to the evaluation of Prev'Air's forecasts regarding the detection of regulatory thresholds. The objective of this exercise is to estimate the capacity of the models to specifically anticipate pollution episodes. Ozone is evaluated over the summer months of 2020 (April to September). The other pollutants (PM10, PM2.5, NO2) are assessed over the whole year 2020. The year 2020 was affected by the Covid-19 crisis and by the lockdowns that occurred in European countries, thus disrupting the usual human activities and associated emissions of pollutants. However, the Prev'Air system continued to produce forecasts based on its standard emissions, without modulation regarding these disturbances. However, it should be noted that the Prev’Air system benefits from an automatic statistical and geostatistical correction approach based on real-time observations, thus making it possible to indirectly consider the effect of confinements. An additional operational forecast was produced starting from March 2020, implementing an estimation of the reduction in emissions due to measures taken against the Covid pandemic[1], but its assessment is not included in this report. Few persistent episodes of national scope were noted over the studied periods: one for ozone, from August 6 to 12, and three for PM10, from January 21 to 26 (with exceedances of the alert threshold), from March 27 to 28, and from November 22 to 27. The evaluation of these episodes is carried out both on Prev'Air's raw forecasts and on the statistical adaptation of the Chimere which aims at correcting the systematic biases of the raw model through a historical learning process. The gains obtained by the statistical model lie in its ability to correct the representativeness bias of the raw model. This statistically corrected forecast generally serves as a reference to the expertise of the Prev'air team for communication in the event of an air pollution episode. It is also a base for the calculations of the AMU module, which checks the criteria of the emergency measure decree[2]. The Prev'air forecasts for the Caribbean DROMs have been assessed as well and show satisfactory performances. On the whole, the performance of Prev'Air is satisfactory with a good ability to meet the quality objectives defined in the national technical reference document[3] which established these target values for the different scores as well as the content to be included in the annual evaluation reports of the forecasting platforms involved in the national air quality monitoring system. The forecasts with statistical adaptation match the performance objectives and have mostly allowed to anticipate the occurrence of pollution episodes and to identify the main affected areas. Raw forecasts are less satisfactory to comply with the quality objective, particularly in the DROM. The composition of PM1 predicted by Prev’air was assessed for the first-time using CARA[4] data. Ammonium, nitrates and sulphates are predicted relatively well by the CHIMERE model. The organic part is greatly underestimated. Concerning chlorine, an improvement should be noted from the end of 2021 with the implementation of the new version of CHIMERE (v2020).       [1]https://www.ineris.fr/fr/ineris/actualites/confinement-environnement-no… [2] Arrêté du 7 avril 2016 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant [3] https://www.lcsqa.org/fr/referentiel-technique-national [4] Favez et al. (Atmosphere, 2021) CARA program   .
Mercredi 21 septembre 2022
Rapport
Modélisation des pesticides dans l'air ambiant
Le plan national de réduction des émissions de polluants atmosphériques (PREPA) 2017-2021 prévoit d’évaluer et de réduire la présence des produits phytopharmaceutiques dans l’atmosphère. Dans ce contexte, la modélisation peut être un outil d’aide à la décision pour cartographier les concentrations atmosphériques des pesticides et ainsi évaluer l’exposition de la population. L’étude de la qualité de l’air passe depuis plusieurs années par le développement et l’exploitation d’outils de modélisation de la pollution atmosphérique couvrant les échelles locales, régionale et mondiale. Les modèles ainsi développés peuvent être adaptés et appliqués à la dispersion des pesticides dans l’atmosphère. Deux types de modèles peuvent être utilisés pour déterminer les concentrations dans l’air de pesticides : Les modèles de dispersion à l’échelle locale peuvent être utilisés pour déterminer l’exposition des riverains. Les modèles actuels présentent cependant des limitations dans la représentation des processus physiques intervenant dans le transport atmosphérique des pesticides. Les modèles de chimie-transport, comme le modèle CHIMERE dont une version pesticide a été récemment développée et prenant en compte l’influence des processus physico-chimiques (dégradation, partage gaz-particule, déposition) sur les concentrations, néanmoins à une résolution en général plus grossière que les modèles locaux. L’une des principales difficultés réside en l’estimation des émissions de pesticides qui exige de coupler des données spatiotemporelles d’application de pesticides à un modèle de volatilisation des pesticides depuis le sol et le couvert végétal. La distribution spatiale d’application des pesticides peut être estimée avec les données de la BNVD-S (la Banque Nationale des Ventes de produits phytopharmaceutiques par les Distributeurs agréés spatialisée). La distribution temporelle peut être obtenue à partir d’enquêtes. Du fait de l’incertitude sur certains paramètres utilisés dans les modèles de volatilisation, il peut être nécessaire de calibrer les modèles à partir de données expérimentales.   Air pollution models of pesticides in the atmosphere The 2017-2021 French National Plan for the Reduction of Air Pollutant Emissions (PREPA) expressed the need for assessing and reducing the presence of pesticides in the atmosphere. Air pollution models covering local, regional and global scales could be applied to the dispersion of pesticides in the atmosphere and thus assess population exposure. Two types of models can be used to determine air concentrations of pesticides: Local scale dispersion models can be used to determine the exposure of local residents. However, these models have limitations in the representation of the physical processes involved in the atmospheric transport of pesticides.  Regional chemistry-transport models, in particular the pesticide version of the CHIMERE model have been recently developed to take into account the influence of physicochemical processes (degradation, gas-particle partitioning, deposition) on concentrations, although at a generally lower spatial resolution. One of the main difficulties lies in the estimation of pesticide emissions, which requires coupling a model of pesticide volatilization from soil and canopy to spatiotemporal data of pesticide application. The spatial distribution of pesticides can be estimated with data from BNVD-S (the National Bank of Sales of Plant Protection Products by Spatialized Authorized Distributors). The temporal distribution can be obtained from surveys. Due to the uncertainty of some parameters used in the volatilization models, it may be necessary to calibrate the models with experimental data.
Mardi 15 novembre 2016
Page
Les acteurs
Actualité
L’INERIS quantifie l’effet du changement climatique sur la pollution à l’ozone
L’INERIS a conduit, pour le compte de l’Agence européenne de l’Environnement, une étude pour déterminer l’ampleur de l’impact du changement climatique sur la pollution à l’ozone. Ce travail inédit s’est appuyé sur toutes les études effectuées depuis 2005 dans ce domaine. Les conclusions, publiées dans Environmental Research Letters, confirment et quantifient l’impact négatif de l’évolution du climat d’ici la fin du siècle sur les concentrations d’ozone atmosphérique.
Actualité
Qualité de l’air - Une délégation de l’ENSM Rabat et ARIA technologies Suez est reçue à l’Ineris
Une délégation marocaine du Pôle de Compétences des Milieux Atmosphériques (PCMA) de l’Ecole Nationale Supérieure des mines de Rabat et ARIA SUEZ a été reçue à l’
Mardi 3 septembre 2013
Rapport
Mesure des composés organiques d’intérêt en air intérieur: composés carbonylés
Classé cancérogène probable par l’IARC, omniprésent dans les environnements clos, l’acétaldéhyde est l’un des polluants majeur de l’air intérieur et va faire à ce titre l’objet de l’établissement de valeurs guide par l’Agence Nationale de SEcurité Sanitaire (ANSES) dans le courant de l’année 2013.Depuis 2007, le LCSQA-INERIS travaille sur la métrologie du formaldéhyde en air intérieur et depuis 2009 à l’évaluation des performances des moyens de mesure sur la durée d’échantillonnage préconisée par les protocoles pour sa surveillance dans les écoles et dans les crèches basés sur des mesures par tube passifs. Ainsi, depuis plus de six ans, les travaux du LCSQA ont permis l’évaluation des tubes passifs Radiello® mais également de nombreuses méthodes de mesure en continu pour la surveillance du formaldéhyde en air intérieur.Depuis 2010, les travaux du LCSQA-INERIS ont eu pour objectif d’évaluer les protocoles établis pour la surveillance du formaldéhyde dans les écoles et dans les crèches. En 2013, ces protocoles ont été évalués pour la surveillance de l’acétaldéhyde. Les tubes à diffusion radiale Radiello® ont pour ce faire été testés en chambre d’exposition à deux niveaux de concentration différents. Les nouveaux tubes passifs (cartouches DSD-DNPH, Diffusive Sampling Device-Dinitrophenylhydazyne) commercialisés par Supelco ont été évalués dans trois environnements différents : chambre d’exposition, air intérieur et air extérieur pour la mesure du formaldéhyde et de l’acétaldéhyde.Ces travaux ont permis d’établir les conclusions suivantes :Evaluation de la mise en oeuvre des protocoles écoles et crèches pour la mesure de l’acétaldéhyde - Sur la base des essais réalisés en chambre d’exposition et compte tenu des écarts obtenus avec la méthode active et la concentration théoriquement générée dans la chambre, le tube Radiello® ne semble à ce jour pas adapté à la surveillance de l’acétaldéhyde en air intérieur. Des essais supplémentaires sont nécessaires pour identifier les paramètres perturbant la mesure (définition du débit de diffusion, présence d’interférent et en particulier de formaldéhyde…) et seront proposés en 2014. - La mesure de l’acétaldéhyde sur tube actif semble perturbée par des phénomènes de compétition vis-à-vis de la réaction avec la DNPH avec le formaldéhyde, souvent plus concentré et dont la réaction est plus rapide, le carbone portant la fonction carbonyle étant plus électropositif et donc plus réceptif à l’attaque nucléophile de l’azote de la DNPH. Afin de valider cette hypothèse, des essais similaires en chambre de simulation pourront être menés en 2014 en générant l’acétaldéhyde seul, puis en mélange avec le formaldéhyde.Evaluation des tubes DSD-DNPH® - En chambre d’exposition et en air intérieur, les tubes DSD-DNPH® sont en bon accord avec les tubes Radiello, les tubes DSD-DNPH® se caractérisant néanmoins par une tendance à la sous-estimation. - Les tubes DSD-DNP® ne semblent pas adaptés à des mesures dans des conditions de concentration faible. Une modification de la méthode analytique par injection d’un volume de solution extraite plus importante pourrait améliorer les limites de quantification.Evaluation des tubes DSD-DNPH® pour la mesure de l'acétaldéhyde Les tubes DSD-DNP® ne semblent à ce jour pas adaptés à la mesure de l’acétaldéhyde, quel que soit l’environnement considéré. LISTE DES ABREVIATIONS ET ACRONYMES ANSES : Agence Nationale de SEcurité SanitaireCOV : Composés Organiques Volatils, DSD : Diffusive Sampling Device, DNPH : 2,4-DiNitroPhénylHydrazine,HCSP : Haut Conseil de Santé Publique,HPLC : High Performance Liquid Chromatography,LCSQA : Laboratoire Central de Surveillance de la Qualité de l’Air,IARC : International Agency for Research on Cancer,INERIS : Institut National de l’Environnement Industriel et des Risques,RDM : Régulateur de Débit Massique,VGAI : Valeurs Guide Air Intérieur.
Mercredi 11 août 2010
Rapport
Essai de comparaison interlaboratoires sur les Hydrocarbures Aromatiques Polycycliques (HAP)
  Dans le cadre de l’assistance aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), un essai de comparaison interlaboratoires analytique a été organisé par l’INERIS en collaboration avec le LNE en avril 2008. Cet essai portait sur l’analyse du Benzo[a]Pyrène ([B[a]P) et des autres HAP concernés par la directive 2004/107/CE du 15 décembre 2004. L’objectif de cet essai était d’une part, d’estimer l’incertitude élargie pour l’analyse du B[a]P dans l’air ambiant afin de savoir comment les différents laboratoires se situent par rapport aux exigences de la directive et d’autre part, de fournir aux AASQA des éléments comparatifs vis-à-vis des résultats obtenus lors des essais interlaboratoires précédents. De plus, la norme NF EN 15549 n’ayant pas été publiée avant la réalisation de cet exercice, les laboratoires ont mis en œuvre leurs propres méthodes analytiques ce qui a permis d’obtenir des informations sur les performances analytiques des laboratoires et sur les améliorations possibles, et au final, de compléter les éléments de comparabilité des données au niveau national. Chaque participant a reçu les matériaux suivants : Quatre matériaux de référence certifiés (MRC) préparés par le LNE, constitués de quatre solutions étalons notées : Etalon 1, Etalon 2, Etalon 3 et Etalon 4, présentant des concentrations différentes ; Deux matériaux liquides (dans du dichlorométhane) préparés par l’INERIS à partir d'un prélèvement réel sur membrane en quartz, à analyser sans autre traitement, notés : Extrait 1 et Extrait 2 ; Quatre matériaux solides (morceaux de filtre) contenus dans des boîtes de Pétri préparés par l’INERIS et issus de prélèvements réels effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 60 m3/h. Chaque filtre était découpé avec un emporte-pièce en 12 morceaux de 47 mm de diamètre. Quatre filtres notés Filtre 1, Filtre 2, Filtre 3 et Filtre 4 ont ainsi été envoyés aux laboratoires. L'utilisation de matériaux liquides (dont les MRC) permet de tester la chaîne analytique de chaque laboratoire, alors que l'utilisation de matériaux solides permet de tester l’ensemble de la chaîne analytique (extraction, concentration, purification si nécessaire et analyse) de chaque laboratoire. Cet exercice comprenait pour la première fois, des matrices de concentrations très différentes afin de prendre en compte les gammes de travail habituelles des laboratoires travaillant aussi bien sur des filtres issus des prélèvements haut débit que bas débit. En 2008 également, l’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 a été mise en œuvre pour la première fois. Ce traitement statistique est préconisé par la norme NF ISO 13528 pour le traitement des résultats des essais de comparaison interlaboratoires. Les principaux enseignements de cet essai interlaboratoires sont les suivants : Le choix de distribuer aux participants à cet essai des matrices de concentrations représentatives des prélèvements haut et bas débit, bien que très pertinent et plus équitable, pose cependant des problèmes lors de la préparation des matrices à analyser, ainsi que sur l’interprétation des résultats. Ainsi, il est important d’attirer l’attention des AASQA sur l’examen des résultats issus des essais interlaboratoires. En effet, les résultats obtenus doivent être regardés de façon spécifique en tenant compte des niveaux de concentrations habituellement rencontrés et non uniquement de façon globale. L’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 sera désormais mise en œuvre sur les prochains essais interlaboratoires organisés par le LCSQA pour les HAP. Il a cependant été constaté qu’en général lors de cet essai, toutes matrices confondues, les écarts-types de reproductibilité (SR) obtenus en réalisant les « analyses robustes » selon les normes NF ISO 13528 et NF ISO 5725-5, sont plus élevés et conduisent à estimer une incertitude élargie plus importante que celle obtenue avec le traitement statistique selon la norme NF ISO 5725-2. De ce fait dans les années à venir une attention toute particulière sera portée à l’interprétation des résultats afin de garantir le suivi historique ainsi que l’évolution des laboratoires. Cependant, par rapport aux années précédentes, une nette augmentation des coefficients de reproductibilité inter laboratoires (CVR) pour les étalons, ainsi que des résultats très médiocres et inexplicables pour les extraits ont également été observés. Les résultats obtenus pour les filtres sont encourageants et respectent pour la plupart d’entre eux les exigences en termes d’incertitudes. Il est donc à signaler une bonne maîtrise des laboratoires sur l’analyse des matrices mettant en œuvre toute la chaîne analytique (extraction, évaporation et analyse) même à de faibles concentrations. De plus, ces résultats satisfaisants ont été obtenus par tous les laboratoires travaillant aussi bien sur des filtres issus des prélèvements haut et bas débit. Une nette amélioration des limites de détection ainsi que des résultats autour des concentrations équivalentes à un prélèvement bas débit est à signaler. Cependant, les résultats obtenus sont moins bons pour des concentrations inférieures au seuil d’évaluation inférieur (0,4 ng/m3). D’une façon générale, les résultats obtenus cette année sont positifs mais des efforts d’optimisation et de validation des méthodes analytiques (changement de solvant, évaporation, identification et quantification des composés…) doivent encore être réalisés par les laboratoires afin de parvenir à des meilleurs résultats sur des matrices telles que les étalons et les extraits, lesquelles devraient normalement donner lieu à des meilleurs résultats que sur des filtres.