Résultats de la recherche

2321 résultats correspondent à PM10
Lundi 4 février 2013
Rapport
Définition des zones sensibles dans les régions françaises. Bilan de la mise en oeuvre de la méthodologie nationale.
Le décret du 16 juin 2010 relatif aux schémas régionaux du climat, de l’air et de l’énergie prévoit que dans les zones plus particulièrement sensibles à la dégradation de la qualité de l’air, les orientations destinées à prévenir ou réduire la pollution atmosphérique soient renforcées. Afin que ces zones soient délimitées de manière homogène sur l’ensemble de la France, une méthodologie nationale a été établie. Le LCSQA et des représentants d’AASQA (Air Rhône-Alpes, ASPA, Air Normand, Airparif) en ont assuré collectivement l’élaboration dans le cadre du groupe de travail « Zones sensibles » (2010). Deux grands types de variables définissent les zones sensibles : des critères liés à la qualité de l’air, et plus spécialement aux dépassements observés ou potentiels des valeurs limites ; des critères liés à la sensibilité propre des territoires, et plus précisément à la présence de population ou de zones naturelles protégées. De janvier 2011 à janvier 2012, conformément à la demande du ministère en charge de l’écologie et du développement durable et à la mission qui leur est confiée par l’arrêté du 21 octobre 2010 (article 10), les AASQA ont appliqué la méthodologie aux différentes régions françaises. Ce travail a été conduit en concertation avec les DREAL (DEAL, DRIEE) et avec le soutien du LCSQA. La définition des zones sensibles a fait ainsi l’objet de nombreux échanges entre les AASQA et le LCSQA qui, selon les sollicitations, a apporté son aide de la manière suivante : indications sur certains points de méthode, extraction de données par région, aide à l’utilisation des SIG; avis sur la mise en œuvre de la méthodologie, aide à l’interprétation des résultats. Le présent rapport dresse un bilan du travail effectué et des résultats obtenus. La méthodologie a reçu un accueil favorable et sa mise en œuvre n’a soulevé aucune difficulté majeure. Quelques limites ou artefacts ont été néanmoins constatés lors de l’identification des zones de dépassement et des zones habitées et de la sélection des mailles et des communes sensibles. Les AASQA en ont corrigé les effets par des ajustements fondés sur des données complémentaires et sur leur expertise. Ces limites ne mettent pas en question le principe et l’organisation de la méthodologie ni la pertinence des résultats qui en découlent. S’il est besoin, elles pourront donner lieu à une mise à jour de la méthodologie lors d’une réévaluation future des zones sensibles. Au total, 5558 communes ont été déclarées sensibles. Elles représentent un peu plus de 11% de la surface du territoire et 61% de la population. Le nombre de communes sensibles, la part de surface occupée par ces dernières et la proportion de population concernée varient notablement selon les régions (ou DOM) : entre 2 et 1519 communes sensibles, entre 0,1% et 98,9% de la surface régionale, entre 30,4% et 99,8% de la population régionale. La répartition spatiale de ces communes apparaît toutefois cohérente, sans discordance entre les régions. La densité de zones sensibles augmente dans les régions les plus touchées par des dépassements consécutifs à la pollution de fond régionale (dépassements liés aux PM10 dans le Nord-Pas-de-Calais, en Picardie, Rhône-Alpes et PACA ; au NO2 et aux PM10 en Île-de-France).
Mercredi 12 mai 2010
Rapport
Evaluation de modèles pour la simulation de la pollution à proximité des axes routiers
La présente étude, planifiée sur trois ans (2007-2009) porte sur la modélisation de la pollution atmosphérique à proximité des axes routiers. Elle a pour objet la mise à disposition de données, d’informations techniques et de méthodologies de référence qui permettent d’apprécier la qualité des modèles disponibles et d’optimiser leur usage. Depuis 2007, un fond d’informations comprenant un recensement de campagnes de mesure réalisées en France ou à l’étranger, des informations techniques sur les modèles, des résultats de modélisation et un outil Excel de comparaison modèle-mesure a été progressivement constitué. Il est accessible sur le site du LCSQA (/fr/pollution-de-proximite). Des jeux de données relatifs à quelques unes des campagnes référencées ont pu être récupérés sur Internet (données du programme européen TRAPOS) ou auprès des AASQA. Depuis 2008, une part importante du travail a été consacrée à l’application de modèles de proximité à certains de ces jeux, afin de s’assurer que les données et méthodologies fournies étaient cohérentes et aisément exploitables, d’offrir des résultats de comparaison entre simulations et mesures et de mieux caractériser le fonctionnement des modèles. Des modèles d’usage courant ont été sélectionnés : ADMS-Urban, CALINE4, OSPM, SIRANE et STREET. Le modèle CALINE4, testé en 2008 sur les données TRAPOS, n’a pas été conservé pour la suite des évaluations : conçu pour simuler la dispersion autour d’axes interurbains, il s’est révélé inadapté à la modélisation en milieu construit. En 2009, trois rues de Nantes ont été étudiées : une rue canyon très encaissée (rue de Crébillon), une rue canyon classique (rue de Strasbourg) et une rue semi-ouverte (quai de la Fosse). Ces nouveaux calculs ont bénéficié de données d’entrée plus complètes (données d’émissions et de concentrations fournies par AIR Pays-de-Loire) et d’une meilleure connaissance du terrain. Les résultats obtenus, enrichis par des tests de sensibilité, confirment et précisent les remarques émises à l’issue des simulations TRAPOS (Wroblewski et al., LCSQA 2008). Ils mettent en évidence quelques traits récurrents des modèles : Quel que soit le modèle, les résultats sont sensiblement meilleurs pour le NO2 que pour les NOx : le biais est plus faible et la dispersion entre modèle et mesure est moindre. La moyenne annuelle modélisée de NO2 s’écarte d’au minimum 3,7% et d’au maximum 35% de la valeur mesurée. La qualité des résultats (notamment la corrélation) est meilleure pour les configurations incluses rigoureusement dans le champ d’application des modèles : rues canyons classiques pour ADMS-Urban, OSPM, SIRANE et STREET, axes ouverts pour ADMS-Urban et SIRANE. Pour ce second type de rue, ADMS-Urban et SIRANE, qui recourent tous deux à une formulation gaussienne, produisent des résultats concordants. Quel que soit le polluant, ADMS-Urban sous-estime les concentrations, ce qui pourrait s’expliquer par une dispersion accrue liée au couplage modèle de rue-modèle gaussien. OSPM est étroitement lié aux données d’émissions ; cela reste vrai pour ADMS-Urban et SIRANE, mais de façon moins sensible. Pour ces deux modèles, l’influence de la météorologie et de la pollution de fond est plus grande, ce qui peut expliquer une meilleure restitution des variations horaires de concentrations et en conséquence, une corrélation modèle-mesure plus élevée. Les statistiques sur les périodes de campagnes ne suffisent pas à caractériser les modèles et leur capacité de suivre l’évolution temporelle des concentrations. Les séries temporelles modélisées et mesurées s’écartent parfois l’une de l’autre de façon notable. Seule une analyse approfondie en fonction de la météorologie et des concentrations de fond pourrait permettre d’évaluer le comportement des modèles sur de courts pas de temps. En ce qui concerne les PM10, les résultats sont plus contrastés. La modélisation demeure satisfaisante pour ADMS-Urban et SIRANE, en dépit d’un biais plus élevé : l’écart entre les moyennes annuelles modélisées et mesurées est inférieur à 40% ; la corrélation, assez faible avec SIRANE pour la rue de Crébillon, est supérieure à 0,7 partout ailleurs. De façon étonnante et pour l’instant inexpliquée, la qualité des résultats d’OSPM chute sensiblement. En 2010, cette évaluation des modèles sera complétée par l’étude de deux situations complexes (axes avec intersections, situés à Poitiers) à partir de données fournies par ATMO Poitou-Charentes. Une note de synthèse reprenant les principaux résultats de ces travaux sera rédigée et étayée d’éléments bibliographiques.  
Vendredi 14 décembre 2012
Rapport
Retour d’expérience sur l’utilisation d’un indicateur optique de type FIDAS 200 - Campagne 2012 à Douai-Dorignies
Un analyseur en temps réel de poussières de type FIDAS 200 (constructeur PALAS®) pour la détermination granulométrique des poussières en suspension a été testé par le LCSQA d’abord à l’INERIS en 2011, puis en 2012, lors d’essais de comparaison multi-instruments de mesure PM à l’initiative d’ATMO-Nord-Pas de Calais dans la station de l’Ecole des Mines de Douai (EMD), sur le site d’observation de Dorignies, en parallèle d’un exercice de suivi de l’équivalence d’analyseurs automatiques homologués pour la mesure réglementaire. La présente note synthétise les résultats obtenus lors de cette dernière campagne. Le FIDAS 200 présente des résultats globalement satisfaisants par rapport à la méthode de référence, avec des coefficients de corrélation de 0,98 et 0,95 respectivement en PM10 et PM2.5. Cependant, une sous-estimation globale de l’ordre de 20% sur les PM10 et de 10% en PM2.5 est observée. Cette sous-estimation semble notamment résulter d’une déviation de calibration se traduisant par un décalage granulométrique. Par retour d’expérience et après échange avec le fournisseur, il est ainsi recommandé de procéder à une calibration mensuelle ou, a minima, avant toute nouvelle campagne de mesures, plutôt qu’à une calibration annuelle comme initialement préconisé par le constructeur. Il sera intéressant de compléter par d’autres essais ce retour d’expérience afin de statuer, à moyen terme, sur une éventuelle homologation par la Commission de suivi « particules » du dispositif national de surveillance pour la mesure automatique des PM, une fois la preuve faite par le constructeur de la démonstration d’équivalence par rapport à la méthode de référence (tests d’équivalence en cours au TüV, en PM10 & PM2.5). Les tests sur différentes typologies de site se déroulent en Allemagne et en Angleterre et l’ensemble des tests devraient se terminer fin juin 2013 pour approbation éventuelle en fin d’année 2013.
Jeudi 26 avril 2012
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Efficacité de séchage des modules FDMS
Depuis le 1er janvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des associations agréées de surveillance de la qualité de l’air (AASQA) pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QA/QC basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2011, le LCSQA/INERIS a poursuivi son travail d’évaluation sur le terrain des TEOM-FDMSavec notamment pour objectif de vérifier la validité des critères définis par le guide d’utilisation dans le cas d’un environnement climatique « extrême » (i.e. chaud et humide). Le présent rapport restitue les principaux résultats de ces travaux, en portant l’accent sur les enseignements tirés de tests de terrain réalisés en Martinique en collaboration avec Madininair, permettant en outre d’étudier l’influence de l’humidité relative sur les performances du sécheur dans le cas d’un aérosol atmosphérique réel très humide (pour faire suite à des travaux réalisés en laboratoire en 2009). Ces résultats renforcent les recommandations préconisées par le guide d’utilisation de 2010. En particulier : -       Les oscillations des températures de point de rosée échantillon (en sortie de sécheur) sont corrélées aux oscillations constatées sur la température de la station (pour des températures de point de rosée ambiant stables). La température de fonctionnement des sécheurs FDMS a donc un impact direct sur l’efficacité de ces derniers et doit être surveillée/contrôlée attentivement, afin d’éviter un éventuel risque de surestimation de la concentration massique. -       L’utilisation de TEOM-FDMS présentant une dépression en amont de la pompe moins importante que -20 inHg (« pouces de mercure », unité utilisée par convention pour le TEOM-FDMS) peut conduire à une baisse rapide du rendement des sécheurs. Sur ce point, il est également à noter que différents retours d’expérience ont montré que le manomètre d’origine pouvait fortement dériver et, par ailleurs, présenter des fuites. Il est donc fortement conseillé de maintenir une dépression plus importante que -20 inHg, et de procéder à une vérification régulière du manomètre d’origine, voire de remplacer ce dernier (permettant en outre la mise en place d’un suivi de la dépression en routine). -       L’utilisation d’un TEOM-FDMS présentant une température de point de rosée échantillon autour de -5°C peut conduire à une légère surestimation de la concentration massique de PM (de l’ordre de 3 µg/m3dans le cas présent d’un environnement très humide). Il semble donc opportun de maintenir un seuil limite d’intervention de -4°C pour ce paramètre. Enfin, la surveillance de l’humidité relative en sortie de sécheur (non suivie jusqu’à présent) pourrait permettre d’identifier plus facilement une dégradation partielle de ce dernier
Vendredi 6 mai 2011
Rapport
Rédaction de guides pratiques de calcul d’incertitudes et formation des AASQA - Estimation des incertitudes sur les mesurages de Plomb, Cadmium, Arsenic et Nickel réalisés sur site dans la fraction PM10 (4/5)
Vendredi 6 mai 2011
Rapport
Rédaction de guides pratiques de calcul d’incertitudes et formation des AASQA - Estimation des incertitudes sur les mesurages de B[a]P réalisés sur site dans la fraction PM10 (3/5)
Mardi 14 juin 2011
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Suivi de la conformité aux méthodes de référence NF EN 12341 et NF EN 14907 des TEOM-FDMS, anciennes (1400AB + 8500C) et nouvelles (1405F et 1405DF) versions
Depuis le 1erjanvier 2007, les TEOM-FDMS sont très largement utilisés en routine par l’ensemble des AASQA pour la surveillance des PM10 et des PM2.5.  Dans le cadre du déploiement et de la mise en œuvre de ces instruments, le LCSQA/INERIS est notamment chargé du suivi et de l’optimisation de leur utilisation au sein du dispositif national de surveillance de la qualité de l’air, ainsi que d'assurer la qualité des données produites en construisant une approche QC/QA basée sur celle décrite dans les normes utilisées pour la mesure des polluants gazeux inorganiques (O3, NOx, SO2, CO). Ce travail se concrétise notamment par la rédaction d’un guide pour l’utilisation du TEOM-FDMS, dont une nouvelle version a été élaborée en 2010, en partenariat avec les AASQA. En 2010, le LCSQA/INERIS a également poursuivi son travail d’évaluation sur le terrain des TEOM-FDMS « ancienne génération » (modules TEOM 1400ab + FDMS 8500c), ainsi que de nouvelles versions instrumentales (1405f et 1405df), par le biais d’exercices de comparaison à la méthode de référence (mesure manuelle selon les normes NF EN 12341 pour les PM10 et NF EN 14907 pour les PM2.5). Le présent rapport décrit et commente les résultats obtenus lors de ces essais d’inter-comparaison. Les résultats obtenus tendent à confirmer l’équivalence des anciennes générations de TEOM-FDMS aux méthodes de référence, et suggèrent que les nouvelles générations (1405f et 1405df), dont les premiers modèles présentaient d’importants défauts de conception, satisfont également à ces exigences normatives.   Il convient de souligner que ces exercices d’intercomparaison ne sauraient constituer des campagnes de démonstration d’équivalence, notamment en raison de l’utilisation d’un seul instrument candidat (i.e. TEOM-FDMS) et du nombre relativement limité de données disponibles pour chacun d'eux. En outre, il est également à noter que certains de ces tests ont été réalisés en marge d’études poursuivant un autre objectif que la vérification du bon fonctionnement du TEOM-FDMS. Ainsi, il n’a pas toujours été possible d’assurer l’installation des préleveurs (utilisés pour la mesure manuelle) dans des conditions optimales. Les résultats obtenus lors de ces derniers tests indiquent un écart significatif des concentrations de PM obtenues par méthodes automatique et manuelle, en raison notamment d’une perte de matière semi-volatile lors du stockage sur site des filtres prélevés pour la mesure gravimétrique. Ces résultats confortent la position du groupe de normalisation Européen pour la détermination des concentrations de PM dans l’air ambiant (GT 15 du CEN/TC 264) sur la nécessité de fixer une valeur limite de température de stockage des filtres sur site (vraisemblablement 23°C), dans le cadre de la révision de la norme EN 12341, à l’image de ce qu’il est déjà préconisé pour les PM2.5. Enfin, il est à souligner que ce groupe de normalisation Européen travaille également à la rédaction d’une norme sur la mise en œuvre des analyseurs automatiques de PM. Outre l’identification de critères techniques à respecter en vue d’une approbation par type et lors d’une utilisation en routine, cette norme préconisera la vérification régulière de l’équivalence des instruments utilisés, sur des sites représentatifs de l’ensemble du dispositif de surveillance. Ainsi, des exercices d’intercomparaison, sur le même principe que ceux présentés dans le présent rapport mais couvrant des périodes plus longues, devront vraisemblablement être mis en œuvre dès la publication de la révision de la Directive 2008/50/CE (prévue pour 2013). Dans un souci d’anticipation, le LCSQA propose de pérenniser la réalisation d’exercices de vérification d’équivalence à partir de 2011, en partenariat avec des AASQA volontaires.
Mardi 24 mai 2011
Rapport
Suivi et optimisation de l’utilisation des TEOM-FDMS : Guide pour l’utilisation du TEOM-FDMS (OBSOLETE)
Attention : ce guide est obsolète - Une version révisée est disponible dans l'espace documentaire (rubrique Guides méthodologiques)   Le présent guide a pour objectif de fournir une aide aux utilisateurs des TEOM-FDMS (TEOM 1400 couplé à un module FDMS 8500) dans les AASQA. Il a été construit à partir des expériences de chacune des AASQA, rencontrées au cours des journées d'échange sur les TEOM-FDMS ayant eu lieu en 2008, 2009 et 2010. La rédaction de ce guide se nourrit également des échanges réalisés par le LCSQA avec les différents laboratoires européens de référence (notamment lors des réunions de l’AQUILA), le constructeur (Thermo Fisher Scientific) ainsi que le distributeur français (Ecomesure). Ce guide pour l’utilisation du TEOM-FDMS est élaboré en tenant compte de l’expérience de chacun des interlocuteurs participant à ces échanges. Il a vocation à évoluer, afin d'être remis à jour régulièrement. Toutes remarques et propositions de corrections sont les bienvenues, et peuvent être adressées directement au LCSQA (Aurélien Ustache, aurelien.ustache@ineris.fr; Olivier Favez, olivier.favez@ineris.fr). Nous observons, depuis 2007 (date de début d’utilisation des TEOM-FDMS pour la réalisation de mesures réglementaires des PM10 en France), une nette évolution dans la connaissance technique du fonctionnement de l’instrument, tant au niveau des solutions à apporter en cas de problème que des procédures à mettre en œuvre pour vérifier le fonctionnement de l'outil en routine. De ce fait, il est aujourd’hui possible de proposer cette nouvelle version du guide pour l’utilisation du TEOM-FDMS (version 2010), sous la forme d’un protocole d’assurance et de contrôle qualité des mesures en routine, qui reprend et complète les versions antérieurs. Le chapitre 2 de ce document est consacrée aux précautions à prendre lors de l’installation sur site (climatisation de la station de mesure, remplacement et optimisation de certaines pièces de l’instrument, choix des paramètres de fonctionnement d’intérêt à rapatrier au niveau du poste central). La chapitre 3 synthétise les audits et maintenances à réaliser en routine pour s’assurer de la bonne qualité des mesures. Dans cette partie, une attention particulière est notamment portée aux points névralgiques de l’instrument : étanchéité des circuits fluide, stabilité de la microbalance, dépression en amont de la pompe et efficacité du sécheur. Enfin, la dernière partie s’attache à décrire les paramètres d’intérêt à suivre en routine pour la validation des données obtenues à l’aide du TEOM-FDMS. Les modalités d'évolution de ce document sont à définir collectivement, et pourront être discutées en Commission de Suivi "Mesure des particules en suspension". Cette dernière remarque s’applique tout particulièrement aux processus de validations de données, aujourd’hui très disparates d’une AASQA à l’autre.
Lundi 24 janvier 2011
Rapport
Méthodologie de définition des zones sensibles
  Ce document fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air ambiant.   Les schémas régionaux Climat, Air et Energie instaurés par la Loi Grenelle 2 seront des documents d’orientation qui devront concilier des préoccupations parfois divergentes sur le changement climatique et la pollution atmosphérique. Pour chaque région française, l’état des lieux requis dans le projet de décret pour ces schémas impose de cartographier des zones ditessensibles, où les orientations destinées à prévenir ou à réduire la pollution atmosphérique seront renforcées. Si des arbitrages se révèlent nécessaires entre les objectifs définis pour la réduction des émissions de gaz à effet de serre et ceux pour la réduction des émissions de polluants dans l’air, une pondération des critères de choix s’imposera et sera fonction des zones plus ou moins sensibles à la qualité de l’air. Si ces zones sensibles se définissent principalement en fonction des dépassements de valeurs limites réglementaires, leur délimitation pose une question méthodologique à laquelle il convient de répondre de manière harmonisée. Un groupe de travail animé par le MEDDTL et comprenant des représentants de l’ADEME, du LCSQA et des AASQA a été constitué à cette fin. Il a eu pour mission d’élaborer dans des délais contraints une méthodologie simple, commune, aisément applicable à l’ensemble des régions, et qui assure la cohérence des zones sensibles sur tout le territoire. Pour mener à bien cette tâche, il s’est appuyé sur des travaux méthodologiques existants, réalisés par les AASQA ou le LCSQA, qu’il a réadaptés et développés en fonction des besoins et des contraintes propres aux zones sensibles. Chaque élément de la méthodologie a été soumis à de nombreux tests avant d’y figurer définitivement. Compte tenu des enjeux associés aux zones sensibles, les polluants retenus dans la définition de ces zones sont les PM10et le NO2 : pour ces composés, des dépassements de valeurs limites réglementaires sont constatés ou risquent de l’être étant donné les niveaux d’émission actuels ; les PM10 et le NO2 sont des polluants d’intérêt à la fois pour des problématiques climatiques, énergétique et de pollution de l’air ; les données de concentration et d’émission disponibles pour ces polluants sont suffisamment nombreuses et précises pour permettre une exploitation satisfaisante dans chaque région française. Les zones sensibles sont cartographiées progressivement selon une maille kilométrique. La première partie consiste à délimiter les zones de dépassement de valeurs limites aux échelles nationale et régionale (dépassements en situation de fond) puis de façon plus localisée (dépassements en situation de proximité). Ce travail tient compte des cinq dernières années de mesure, dans la limite des données disponibles. Pour la pollution de fond, et sauf cas particulier, les dépassements de la valeur limite relative aux concentrations journalières de PM10 constituent la principale problématique. L’identification des zones de dépassement repose sur la combinaison de données journalières d’observation et de modélisation et sur l’exploitation des estimations journalières ainsi obtenues. Pour la pollution de proximité, qu’il est plus complexe de cartographier, une approche simplifiée fondée sur les inventaires d’émissions de NOx a été mise au point. Les zones de dépassement sont délimitées selon un critère de surémission, c’est-à-dire d’excès d’émission par rapport à la moyenne nationale. De légers réajustements sont ensuite possibles pour garantir le bon accord de ces zones avec les dépassements réellement constatés. La deuxième partie fait ressortir les zones qui du fait de la présence de récepteurs peuvent révéler une plus grande sensibilité à la pollution atmosphérique. Les populations et les écosystèmes sont ici considérés. A partir des bases de données sur l’occupation des sols et le patrimoine naturel, on sélectionne ainsi les zones habitées (tissu urbain continu ou discontinu) et les espaces naturels protégés (zones de protection de biotope, parcs nationaux et régionaux, réserves naturelles). La dernière partie fait la synthèse des précédentes étapes. Toute maille incluse dans une zone de dépassement, du fait de la pollution de fond et/ou de proximité, et dont la sensibilité est accrue par la présence de populations ou d’espaces naturels protégés, est considérée comme sensible. Les zones sensibles sont finalement agrégées à l’échelle de la commune, premier niveau administratif de gestion de la qualité de l’air. Dès le début de l’année 2011, toutes les AASQA devront appliquer la méthodologie à leur domaine. Le LCSQA assurera un soutien technique dans cette mise en œuvre. Eléments essentiels des schémas régionaux Climat, Air et Energie, les zones sensibles seront également des outils utiles à la planification et pourront être présentées dans les Programmes de Surveillance de la Qualité de l’Air (PSQA).
Mardi 20 avril 2010
Rapport
Veille technologique et réglementaire sur la méthode par absorption de rayonnement beta pour la mesure des particules en suspension