Résultats de la recherche

362 résultats correspondent à AASQA
Vendredi 29 janvier 2016
Rapport
guide méthodologique de validation des données de mesures automatiques
  Ce guide fait partie du référentiel technique national, conformément à l'arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l'air.  Il a été approuvé en CPS (comité de pilotage de la surveillance) du 19 novembre 2015. Mise en application : 1er janvier 2016. Ce guide méthodologique a pour objet de fournir aux acteurs de la qualité de l’air les informations nécessaires pour la validation et l’expertise des données afin de garantir le niveau de qualité souhaité ou exigé des informations produites par les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA) et d’harmoniser au niveau national les pratiques de validation et d’expertise des mesures automatiques. Il explicite les pré-requis et les connaissances que doivent maîtriser les personnes habilitées pour pouvoir effectuer la validation et l’expertise des données. Il détaille les différentes étapes du processus de validation et d’expertise, ainsi que les outils de validation associés. A partir de ces éléments généraux, ce guide décline également les règles de validation et d’expertise communes à l’ensemble des polluants, ainsi que des règles plus spécifiques applicables aux différents types de polluants (gazeux, particulaires et composés émergents). Ce document est la mise à jour du guide sur la validation et l’agrégation des données (ADEME, 2003[1]). Il est désormais séparé en deux parties, l’une sur l’agrégation des données et l’autre sur la validation des données. La partie consacrée à l’agrégation des données a fait l’objet de travaux spécifiques en 2013/2014 et est actuellement abordée dans un document spécifique[2]. La partie portant sur la validation des données est quant à elle divisée en deux sous-parties traitées dans le cadre de groupes de travail organisés au sein des Commissions de suivi suivantes : Commission de Suivi « Mesures automatiques » : elle porte sur la validation des données de mesures automatiques ; ces travaux font l’objet du présent document. Commission de Suivi « Benzène, HAP et métaux lourds » : elle porte sur la validation des données de mesures manuelles. Dans un premier temps, ces deux sous-parties font l’objet de deux documents distincts qui pourront être regroupés dans un document unique lors de leur révision à moyen terme (3-4 ans). Note : Le processus de validation et d’expertise correspond à la vérification selon le guide qui accompagne la décision 2011/850/EU[3] (guide IPR). Cette vérification distingue 3 états : non vérifié, vérifié de façon préliminaire et vérifié. Ces différents états sont explicités dans le tableau 2 du présent guide.   [1] Règles et recommandations en matière de : validation des données, critères d’agrégation et paramètres statistiques. ADEME (édition 2003) [2] Guide d’agrégation des données de qualité de l’air pour l’application des Directives 2004/107/CE et 2008/50/CE sur la Qualité de l’Air ambiant (édition 2015) [3] Décision d’exécution de la Commission du 12/12/2011 portant modalités d’application des directives 2004/107/CE et 2008/50/CE du Parlement européen et du Conseil concernant l’échange réciproque d’informations et la déclaration concernant l’évaluation de la qualité de l’air ambiant
Jeudi 21 janvier 2016
Rapport
Performances de PREVAIR et synthèse des développements et travaux d'assistance destinés aux utilisateurs en 2014
Ce rapport synthétise l’ensemble des actions menées dans le cadre de la plateforme PREV’AIR (www.prevair.org) pour répondre aux besoins des utilisateurs. Cela concerne les développements visant aussi bien à étendre les capacités du système de prévision qu’à rendre ses performances plus élevées. La première partie du rapport fournit une estimation du comportement des outils via des indicateurs statistiques classiques permettant de comparer les résultats de modélisation aux observations obtenues en temps quasi réel de la base de données nationale alimentée par les AASQA (associations de surveillance de la qualité de l’air). En 2014, comme en 2013 l’absence d’épisode marquant pour l’ozone a conduit à une stabilité des performances affichées par les prévisions pour ce polluant. Le système a fait preuve d’une bonne aptitude à détecter les quelques épisodes d’ozone. Au sujet des particules, le nombre d’épisode a diminué par rapport à 2013, avec un unique épisode marquant au mois de mars qui a été bien décrit et suivi par les prévisions avec adaptation statistique. Les concentrations moyennes en PM10 sont un peu plus faibles que lors des années précédentes et les performances des prévisions en légère hausse. Plusieurs évolutions du système ont été engagées en 2014 et se poursuivront en 2015 pour doter PREV’AIR de nouvelles prévisions et analyses sur la France. Notamment la prévision FRA05-IFS sera remplacée par une configuration équivalente mais à 4 km de résolution à laquelle des traitements d’adaptation statistique et d’analyse seront associés.
Vendredi 18 mars 2016
Rapport
Impact de la combustion de biomasse sur les concentrations de PM10 (programme CARA - hiver 2014-2015)
Rapport "Impact de la combustion de biomasse sur les concentrations de PM10 dans 10 agglomérations du programme CARA au cours de l’hiver 2014-2015". Cette étude s’inscrit dans la continuité des travaux menés depuis une dizaine d’années par le LCSQA (en étroite collaboration avec des laboratoires de recherche, dont le LGGE) afin de mieux évaluer l’impact du chauffage résidentiel au bois sur les niveaux de PM10 enregistrés sur différentes stations du dispositif national de surveillance. Pour réaliser ce type d’étude, il est généralement recouru à l’analyse de marqueurs organiques spécifiques, tel que le levoglucosan, prélevés sur filtres. Il est ensuite possible d’estimer la quantité de matière particulaire (PM) provenant de la combustion de biomasse en appliquant différents facteurs multiplicatifs aux concentrations obtenues pour ces marqueurs. Ces dernières années ont également vu l’émergence d’analyseurs automatiques de la composition chimique des particules permettant notamment l’identification et la mesure en temps réel des particules liées à cette source. En particulier, de récents tests en AASQA ont permis de vérifier la robustesse et la fiabilité de l’Aethalomètre multi-longueurs d’onde de type AE33, conduisant à son implantation sur différents sites urbains de fond du dispositif national entre 2013 et 2014. Dans le cadre de ses travaux pour le LCSQA, l’INERIS a alors proposé de réaliser une étude combinant des mesures sur filtres et des mesures par AE33 au cours de l’hiver 2014-2015. Le présent rapport rend compte des résultats obtenus à l’aide des mesures sur filtres, réalisées pour 10 sites de fond urbain du programme CARA au sein de grandes agglomérations françaises (constituant à ce jour le plus large panel de sites étudiés simultanément en France). Les prélèvements ont été réalisés sur une période hivernale élargie s’étendant de mi-novembre 2014 à mi-avril 2015. Sur cette période, les contributions journalières moyennes aux PM10 de la combustion de biomasse sont globalement comprises entre 18% et 36%, les plus faibles niveaux étant obtenus pour Marseille et les plus élevés pour Grenoble. Parmi les autres agglomérations étudiées, Bordeaux et Poitiers présentent également des contributions journalières très élevées (environ 30%). Pour les autres sites (Rouen, Reims, Strasbourg, Nantes, Lyon, et Nice), cette contribution est estimée à environ 20%. Ces résultats sont en bon accord avec ceux obtenus précédemment, pour certains de ces sites ou pour d’autres agglomérations françaises, confirmant l’importance de l’influence du chauffage résidentiel au bois sur la qualité de l’air de l’ensemble du territoire métropolitain en hiver. Les résultats obtenus dans le cadre decette étude permettront d’affiner la méthodologie d’exploitation des données issues de la mesure automatique.
Vendredi 17 janvier 2014
Rapport
Comparaison inter laboratoires organisée pour les laboratoires européens impliqués dans l’analyse du lévoglucosan et de ses isomères
Depuis 2011, l’INERIS est partenaire associé du réseau européen ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) du programme de recherche « FP7-Infrastructures ». Ce projet vise notamment l’harmonisation des techniques d’observation des particules atmosphériques, des espèces gazeuses à courte durée de vie et des nuages à l’échelle européenne. Dans ce cadre et à travers le pilotage du programme CARA (Caractérisation chimique des particules) pour le LCSQA (Laboratoire central de surveillance de la qualité de l’air), l’INERIS a organisé une comparaison inter laboratoires analytique  (CIL) au premier semestre 2013. Cet essai portait sur l’analyse du lévoglucosan et de ses isomères (mannosan et galactosan) reconnus pour être des composés organiques majeurs dans l’étude des sources de particules, notamment pour identifier la source combustion de biomasse (chauffage au bois). La comparaison inter laboratoire a été ouverte prioritairement aux membres du réseau ACTRIS puis à tous les laboratoires européens. Sur 15 inscrits, dont 3 français (tous sont impliqués dans l’analyse du levoglucosan pour les AASQA), 13 laboratoires ont rendus des résultats. Les participants ont reçu les matériaux d’essais suivants à analyser: ‐ un matériau de référence commercialisé par le NIST (National Institut of   Standards and Technology) (SRM 1649b, urban dust). ‐ trois matériaux solides (poinçons de filtre) préparés par l’INERIS et issus de   prélèvements d’air ambiant pour deux d’entre eux, le troisième étant un   blanc de terrain. Les prélèvements ont été effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 70 m3/h. Chaque filtre était découpé avec un emporte-pièce en 16 poinçons de 47 mm de diamètre. Aucune norme n’encadre actuellement l’analyse du lévoglucosan et de ses isomères. Les laboratoires ont mis en oeuvre leurs propres méthodes analytiques. Ceci a permis d’obtenir des informations sur les performances analytiques des laboratoires ainsi que sur la comparabilité des données au niveau européen. La plupart des laboratoires ont obtenu des Z-scores (indicateur statistique de performance) satisfaisants. Seuls deux laboratoires présentent des valeurs aberrantes (13320 et 13373) sur le lévoglucosan et un seul (13312) sur le mannosan et/ou le galactosan. De plus, trois laboratoires (13320, 13373 et 13337) présentent des écart-types de répétabilité supérieurs à 10 %. Les écart-types de reproductibilité sont de l’ordre de 20-25% pour le lévoglucosan et le mannosan mais de 30 à 60 % pour le galactosan. Un laboratoire (13358) a obtenu un résultat d’analyse sur le filtre blanc très élevé. Les limites de quantification évaluées par les participants semblent globalement être plus faibles pour les utilisateurs de chaînes analytiques de type GC/MS que ceux utilisant la HPLC. Aucun impact de la procédure analytique mise en oeuvre n’a été détecté lors des traitements statistiques dans les résultats obtenus dans le cadre de cette CIL. Les incertitudes élargies calculées dans le cadre de cette CIL pour le lévoglucosan et le mannosan sont satisfaisantes et par exemple, cohérentes avec celles requises pour l’analyse du benzo[a]pyrene dans l’air ambiant (Directive européenne 2004/107/CE) ( Les AASQA collaborant avec des laboratoires français impliqués dans l’analyse du levoglucosan et ses isomères sont invités à se rapprocher de ces derniers afin de prendre connaissance de leurs résultats.
Vendredi 27 juillet 2012
Rapport
Développement de matériaux de référence pour les métaux (Arsenic, Cadmium, Plomb et Nickel)
Conformément aux recommandations des directives européennes 2008/50/CE et 2004/107/CE, les Associations Agréées de Surveillance de la Qualité de l'Air (AASQA) effectuent régulièrement des prélèvements de métaux dans l'air ambiant sur des filtres qui sont ensuite analysés par des laboratoires d’analyse. Le LCSQA organise tous les 2 ans des campagnes d'inter comparaison en France avec ces laboratoires d’analyse. Lors de ces campagnes, les laboratoires analysent les quatre métaux : ·         D'une part, dans des solutions étalons issues d’une minéralisation de filtres impactés : cette étape a pour but de vérifier la partie "analytique" de l'analyse ; ·         D'autre part, directement sur des filtres impactés par des poussières atmosphériques : cette étape permet de vérifier l'ensemble du processus de mesure, à savoir la partie "prélèvement", la partie "minéralisation" et la partie "analytique" de l'analyse. Dans le cas de l'analyse des solutions étalons, les résultats montrent que certains laboratoires déterminent des masses qui ne sont pas cohérentes avec la masse certifiée fournie par le laboratoire de référence. Ceci montre donc l'importance d'assurer une traçabilité des analyses, par exemple via l’utilisation de matériaux de référence certifiés (MRC) qui présentent l’avantage de pouvoir valider la méthode d’analyse, d’assurer la justesse, la fidélité et d’établir la traçabilité métrologique des résultats obtenus aux unités internationales, pour pouvoir ensuite comparer les évolutions des concentrations de métaux dans le temps et dans l'espace. Une étude bibliographique a permis de mettre en évidence un manque de MRC pour les métaux sur le marché. C'est pourquoi, le LCSQA-LNE s’est proposé de développer des MRC pour les métaux réglementés. L'objectif final de cette étude est de mettre à disposition des laboratoires d'analyses, des matériaux de référence certifiés (MRC) pour les métaux (Arsenic, Cadmium, Plomb et Nickel) afin qu'ils puissent améliorer la qualité des analyses de métaux dans les particules effectuées pour les AASQA en garantissant leur traçabilité aux étalons de référence. Ces MRC se présenteront sous la forme de particules dopées avec des métaux déposées sur des filtres. L’étude menée en 2011 montre que le matériau de cendres d’incinération urbaines envisagé pour la fabrication d’un Matériau de Référence de filtres impactés de poussières s’est révélé être un bon candidat de par sa quantité disponible, la taille de ses particules après tamissage (PM 10) et la teneur des 4 éléments réglementés par les directives européennes. Cette étude a permis de développer une technique pour l’imprégnation des filtres en quartz qui est certes délicate à mettre en œuvre mais suffisamment bien maîtrisée pour obtenir une bonne homogénéité des filtres entre eux : en effet, la concentration en métaux des filtres chargés n’est pas significativement différente d’un filtre à l’autre. De plus, les résultats montrent que les concentrations en arsenic, cadmium, plomb et nickel de ces matériaux de référence sont stables dans le temps (jusqu’à 6 mois). Enfin, il n’a été constaté aucune influence du transport des filtres (aller-retour en Italie) sur les concentrations des 4 éléments. Compte tenu des résultats très positifs obtenus en 2011, le LNE propose pour 2012 de les concrétiser en passant à l’étape finale de ce projet à savoir la production réelle d’un lot d’une centaine de filtres imprégnés de poussières de cendres d’incinération urbaine : la concentration en métaux sera ensuite certifiée par DI-ICP/MS et par ajouts dosés (dans le cas de l’arsenic). De plus, des tests de reproductibilité et de stabilité dans le temps seront poursuivis. Les procédures techniques liées au développement de ces MRC (fabrication, certification des valeurs et estimation des incertitudes associées) seront rédigées. De même, il conviendra d’établir un certificat indiquant les valeurs certifiées et leurs incertitudes associées, ainsi que les méthodes d’analyse mises en œuvre pour leurs obtentions. Enfin, le conditionnement du MRC pour sa distribution aux laboratoires sera étudié. Pour conforter le développement de ce MRC, le LNE propose d’organiser une comparaison bilatérale avec l’EMD : des MRC (filtres imprégnés de poussières de cendres d’incinération urbaine) seront analysés par l’EMD et les concentrations analysées par l’EMD seront comparées à celles certifiées par le LNE.
Lundi 11 juillet 2011
Rapport
Assistance relative à l’exploitation de données de campagnes et à la réalisation de cartographies (2/2)
Le LCSQA assure chaque année une assistance technique et méthodologique dans l’élaboration de plans d’échantillonnage, l’exploitation de données et la réalisation de cartographies. La présente note synthétise les actions réalisées en 2010 dans ces différents domaines pour le compte des AASQA. Ces actions sont de nature diverse : travail de méthode, aide ponctuelle, audit, formation, mais toutes ont pour fin le développement d’une approche cohérente, qui va de la collecte de données à l’analyse statistique ou géostatistique de ces dernières. Parmi les travaux conduits en 2010, on relèvera plus particulièrement : l’approfondissement et la valorisation d’une méthode d’optimisation de l’échantillonnage spatial mise au point en 2009 en collaboration avec le Centre de Géosciences/géostatistique de Mines ParisTech ; l’organisation d’une formation de statistique appliquée à la qualité de l’air, avec la participation de Capacités (Université de Nantes) et de Stat-Consult ; la réalisation d’un audit sur les outils de modélisation et de cartographie mis en œuvre par AIRFOBEP, en réponse à une sollicitation de cette AASQA ; une aide à l’élaboration de cartes analysées avec le logiciel R.
Samedi 25 septembre 2004
Rapport
Guide de calcul des indices ATMO et IQA et site internet de chaque AASQA (OBSOLETE)
    Attention : Ce guide de 2004 est obsolète ; il a fait l'objet d'une révision en 2020 applicable au 1er janvier 2021. Lire "Indice ATMO guide de calcul en application de l'arrêté du 10 juillet 2020"
Vendredi 19 juillet 2013
Rapport
Intercomparaisons des stations de mesures : Intercomparaison des moyens mobiles nationaux (Toulouse 2012)
La directive européenne 2008/50/CE du 21 mai 2008 dédiée à la qualité de l’air appelle au respect de valeurs limites ou valeurs cibles, en leur associant une exigence en terme d’incertitude maximale sur la mesure. Les associations agréées de surveillance de la qualité de l'air sont tenues de participer aux essais d'intercomparaison destinées aux organismes agréés de surveillance de la qualité de l’air mis en place dans le cadre du Laboratoire Central de Surveillance de la Qualité de l'Air (article 9 de l’arrêté du 21 octobre 2010).Dans l’objectif de vérifier le respect des exigences de la directive européenne 2008/50/CE, le LCSQA propose annuellement aux AASQA une intercomparaison de moyens mobiles pour les polluants SO2, O3, NO, NO2 et CO à différents niveaux de concentration et tout particulièrement au voisinage des seuils horaires d’information ou d’alerte pour les polluants NOx, O3, SO2, et de la valeur limite sur 8h pour le CO. Un essai d’intercomparaison de moyens de mesures mobiles a été réalisé en mars 2012 en collaboration avec ORAMIP. Il a réuni 7 participants et entités de mesures, constituant un parc de 42 analyseurs de NOx, O3, CO et SO2. Durant cette intercomparaison, le système de dopage permettant une distribution homogène des gaz sur 3 directions a été mis en oeuvre, tout en respectant des temps de résidence inférieurs à 5 secondes pour les oxydes d’azote et l’ozone.Quelques dysfonctionnements d’appareils divers ont été identifiés en cours d’exercice sur différents analyseurs, sans conséquences sur le déroulement de l’exercice.Lors de la circulation de gaz pour étalonnage en aveugle, la majorité des écarts constatés était nettement inférieure à l’incertitude tolérée sur la mesure des analyseurs (4 %). On constate que les écarts importants sont peu fréquents pour l’ensemble des polluants. Le décompte des écarts significatifs se limite, en fin de campagne pour un niveau de concentration d’étalonnage habituel, à aucun analyseur SO2, aucun analyseur d’O3, 2 analyseurs de CO, aucun analyseur en NO et 3 en NO2, sur les 42 analyseurs présents sur le site. On rappellera que cet exercice de circulation a été considérablement étoffé depuis la mise en place des exercices d’intercomparaison, ce qui conduit à des répercussions positives sur cette phase préliminaire. On rappellera que cette phase ne conduit en aucun cas à un recalage de l’ensemble des analyseurs des participants. Elle a pour seuls objectifs de vérifier la cohérence des étalons de transferts et d’expliquer a posteriori les éventuels décalages observés durant les séquences de dopage. En application de la norme NF ISO 5725-2, les intervalles de confiance de répétabilité et de reproductibilité ont été déterminés pour chaque polluant et différents niveaux. On signalera que l’application des tests statistiques de Cochran et Grubbs a conduit à l’élimination de 18 données quart-horaires pour le SO2 et 4 quart-horaires pour le NO2, sur un total de plus de 3600 mesures tous polluants confondus. L’avis d’expert n’a pas du être utilisé pour écarter certaines données du calcul statistique. Les intervalles de confiance de reproductibilité (assimilables aux incertitudes demesures) nettement inférieurs au seuil de 15 % ont été obtenus pour les polluants suivants : • CO (7,5 %) • SO2 (4,7 %) • O3 (5,2 %) • NO (6,7 %) • NO2 (7,7 %). D’une manière générale, les résultats du traitement statistique suivant la norme NF ISO 13 528 et conduisant aux z-scores sont homogènes et globalement satisfaisants pour tous les participants. Une large majorité des z-scores sont compris entre ±1. Les résultats de cette intercomparaison permettent d’évaluer la qualité de mise en oeuvre des méthodes de mesures par les AASQA. Depuis plusieurs années, les résultats obtenus en terme d’incertitude de mesure sont conformes aux exigences de la Directive Européenne et confirment dans la durée la fiabilité du système de mesure national. La faible fréquence d’évènements imprévus lors du déroulement de cet exercice a permis d’effectuer le test d’un nouveau dispositif de dopage au niveau des têtes de prélèvement, permettant d’intégrer celles-ci au calcul d’incertitude expérimental. Ce dispositif reprend le système de génération basé sur la dilution de gaz concentrés puis dilués dans un flux d’air ambiant. Le système de distribution repose sur la technique du coiffage de la tête de prélèvement par un sac en Tedlar, inerte aux polluants classiques. Ce dispositif peut autoriser le coiffage et la distribution simultanée de gaz sur un maximum de 12 têtes de prélèvements. Pour l’ensemble des polluants, on aura pu constater la bonne cohérence des mesures faites simultanément dans les sacs Tedlar soit via les têtes de prélèvements soit via des lignes individuelles, indiquant l’influence négligeable des têtes de prélèvement dans la chaîne de mesure. Dans certains cas particuliers, les écarts ont été expliqués par : • Une ligne obturée par des insectes • Un faisceau de lignes neuves non passivées • Un faisceau de lignes anciennes non nettoyées Le traitement statistique des données, identique à celui de l’exercice classique a conduit à l’élimination des mesures de SO2 d’un des participants en raison d’un décalage trop important, et de l’élimination sur avis d’expert des quart-horaires de 3 paliers de dopage d’un second participant en raison du colmatage de sa ligne de prélèvement.
Mercredi 22 mai 2013
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS - Bilan des campagnes 2011-2012 de suivi d’équivalence du TEOM-FDMS en PM10
En réponse à l’accroissement des exigences européennes en matière de contrôle qualité des mesures automatiques de PM (se matérialisant par un projet de norme, actuellement au stade de spécification technique : TS 16450), le LCSQA/INERIS a mis en oeuvre en 2011-2012 un programme de suivi d’équivalence des mesures de concentrations journalières de PM10 par TEOM-FDMS. Cette étude a été rendue possible par la participation active des AASQA (Air Lorraine, Air PACA, AIRPARIF et Atmo NPdC), ayant contribué à assurer la disponibilité de sites appartenant au dispositif « réglementaire », la réalisation des mesures automatiques selon leurs protocoles habituels, et/ou le prélèvement des filtres selon les modalités de la norme NF EN 12341.Cette étude consiste en la réalisation d’exercices de comparaison entre les moyennes horaires obtenues par TEOM-FDMS selon les conditions de mesure au sein du dispositif national et les mesures manuelles (gravimétriques) constituant la méthode de référence définie par la Directive 2008/50/CE. Les campagnes ont été réalisées en respectant autant que possible les préconisations de la TS 16450 sur cinq sites de différentes typologies, localisés sur la moitié Nord(-Est) et le quart Sud-Est de la France, i.e. sur des territoires fréquemment soumis à des dépassements de valeurs limites fixées pour les PM10. Les mesures automatiques réalisées par TEOM-FDMS ont été comparées aux mesures de référence, selon la dernière version (v2.9) du logiciel de traitement de données élaboré par le RIVM et recommandé par la Commission européenne. En considérant l’ensemble de la série de données, la régression linéaire orthogonale obtenue indique une pente de 0,96 et une ordonnée à l’origine de 2,5. Compte tenu des incertitudes relativement faibles, associées à ces deux valeurs, elles sont à considérer comme significativement différentes de 1 et 0. Ainsi, une correction systématique des résultats obtenus par TEOM-FDMS pourrait permettre une amélioration globale des exercices de comparaison avec la méthode de référence. Néanmoins, ce type de correction engendrerait une augmentation de l’incertitude relative élargie (13,8% au lieu de 13,0% sans correction). De ce fait, et comme préconisé par la TS 16450, il est jugé ici inadéquat d’appliquer une fonction de correction aux mesures par TEOM-FDMS. Par ailleurs, l’incertitude obtenue lors de ces tests pour les mesures automatiques par TEOM-FDMS se situe dans une gamme (de 10 à 15%) pour laquelle la TS 16450 préconise, en l’état, la réalisation du suivi d’équivalence sur un minimum de 3 sites représentatifs des différentes conditions d’utilisation au sein du dispositif. Au vu de l’avancement du projet de norme (nécessitant des travaux de validation réalisés dans le cadre d’un appel d’offre lancé au premier trimestre 2013 ainsi qu’une nouvelle phase de rédaction puis de soumission au Etats Membres), la publication de cette norme n’est pas à prévoir avant 2017 et le caractère contraignant de sa mise en oeuvre avant 2018. Néanmoins, les difficultés d’utilisation rencontrées par les AASQA pour les différents types d’analyseurs de PM incitent au renforcement d’un programme pérenne de suivi d’équivalence cohérent à l’échelle nationale, incluant également les PM2.5, ainsi que l’application de guides méthodologiques nationaux répondant aux exigences européennes en matière de maintenance des analyseurs et de contrôle qualité des données.
Jeudi 14 octobre 2010
Rapport
Essai de comparaison interlaboratoires sur les Hydrocarbures Aromatiques Polycycliques (HAP) - Rapport intermédiaire
Dans le cadre de l’assistance aux Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), un essai de comparaison interlaboratoires analytique a été organisé par l’INERIS en collaboration avec le LNE en avril 2010. Cet essai portait sur l’analyse du Benzo[a]Pyrène ([B[a]P) et des autres HAP concernés par la directive 2004/107/CE du 15 décembre 2004. L’objectif de cet essai était d’une part, d’estimer l’incertitude élargie pour l’analyse du B[a]P dans l’air ambiant selon la norme NF EN 15549[1] afin de savoir comment les différents laboratoires se situent par rapport aux exigences de la directive et de la norme, et d’autre part, de fournir aux AASQA des éléments comparatifs vis-à-vis des résultats obtenus lors des essais interlaboratoires précédents. De plus, la norme NF EN 15549 étant seulement applicable pour le B[a]P, les laboratoires ont mis en œuvre leurs propres méthodes analytiques pour les autres HAP de la directive, ce qui permettra d’obtenir des informations sur les performances analytiques des laboratoires et sur les améliorations possibles, et au final, de compléter les éléments de comparabilité des données au niveau national. Chaque participant a reçu les matériaux suivants : -        Quatre matériaux de référence certifiés (MRC) préparés par le LNE, constitués de quatre solutions étalons notées : Etalon 1, Etalon 2, Etalon 3 et Etalon 4, présentant des concentrations différentes ; -        Trois matériaux liquides (deux dans du dichlorométhane, un dans du toluène) préparés par l’INERIS à partir d'un prélèvement réel sur membrane en quartz, à analyser sans autre traitement, notés : Extrait 1, Extrait 2 et Extrait 3 ; Quatre matériaux solides (morceaux de filtre) contenus dans des boîtes de Pétri préparés par l’INERIS et issus de prélèvements réels effectués sur filtre en quartz à l'aide d'un préleveur grand volume de type ANDERSEN, équipé d'une tête PM10, à un débit de 60 m3/h. Chaque filtre était découpé avec un emporte-pièce en 16 morceaux de 47 mm de diamètre. Quatre filtres notés Filtre 1, Filtre 2, Filtre 3 et Filtre 4 ont ainsi été envoyés aux laboratoires. Comme lors de l’essai réalisé en 20082, cet exercice comprenait des matrices des concentrations très différentes afin de prendre en compte les gammes de travail habituelles des laboratoires travaillant sur des filtres issus des prélèvements haut débit ou bas débit. Suite aux conclusions de l’essai de 2008, l’analyse robuste des résultats selon les normes NF ISO 13528 et NF ISO 5725-5 a été mise en œuvre pour cet essai. Dans ce rapport intermédiaire sont présentés uniquement les résultats bruts ainsi que les résultats issus des tests statistiques en vue d’une diffusion rapide aux laboratoires afin que chacun examine ses propres résultats et puisse rapidement mettre en œuvre d’éventuelles mesures correctives. L’interprétation ainsi que la mise en perspective des résultats obtenus sera effectuée dans un rapport final qui sera publié fin 2010. [1]NF EN 15549. Qualité de l’air. Méthode normalisée pour le mesurage de la concentration du benzo[a]pyrène dans l’air ambiant. Juillet 2008. 2Rapport LCSQA 2009. Essais de comparaison interlaboratoires sur les Hydrocarbures Aromatiques polycycliques. Rapport final. Disponible sur www.lcsqa.org