Résultats de la recherche

213 résultats correspondent à LNE
Lundi 13 avril 2015
Rapport
Développement et maintien des étalons de référence
L'objectif est de maintenir un bon niveau de performances métrologiques pour les étalons de référence SO2, NO, NO2, CO, O3 et BTEX (benzène, toluène, éthylbenzène et xylènes) utilisés pour titrer les étalons des AASQA, afin de pouvoir continuer à produire des prestations de qualité. La première partiede l'étude a consisté à faire une synthèse des actions menées pour maintenir l'ensemble des étalons de référence afin de pouvoir réaliser les étalonnages prévus dans l’étude « Maintien et amélioration des chaînes nationales d’étalonnage » de novembre 2014. La deuxième partie a porté sur l’amélioration de la méthode de génération des mélanges gazeux de référence de SO2 par perméation. De récentes comparaisons interlaboratoires menées au niveau international montrent des différences significatives entre des étalons préparés par méthode gravimétrique (norme ISO 6142) et des étalons préparés par perméation pour le SO2 (ceci est également valable pour le NO2) : les raisons des écarts observés n'ont pour l'instant pas pu être expliquées. Le but final de cette étude initiée en 2011 était donc de réexaminer la méthode de génération des étalons de référence par perméation en reprenant la procédure de pesée des tubes à perméation, en reconsidérant le calcul des débits de perméation et en y associant un nouveau calcul d'incertitude dans l’objectif d’améliorer la justesse des mesures et l’estimation des incertitudes associées. L’étude menée en 2011 a permis d’établir un bilan critique sur la mise en œuvre des tubes à perméation comme moyen de génération de mélange gazeux étalon. Elle montrait que l’amélioration de la détermination du volume des tubes et de la régulation de la température des tubes était indispensable pour réduire les incertitudes sur les concentrations des mélanges gazeux étalons générés. L’étude effectuée en 2012 a porté sur la réalisation d’une bibliographie sur les différents systèmes existants et a conduit à identifier un bain à débordement dont la régulation de température se fait au centième de degré. La mise en œuvre de ce bain à débordement a permis de s’affranchir des variations de température et donc d’utiliser un tube dont la température de fonctionnement nominale est de 21°C : ceci permet de négliger l’impact lié à la sortie du tube nécessaire pour le peser afin de déterminer son taux de perméation. Par conséquent, la justesse du taux de perméation s’en trouve améliorée et les incertitudes associées diminuées. L’année 2013 a été marquée par la remise en service de la balance à suspension électromagnétique suite aux dysfonctionnements observés en 2012 et au choix d’un tube à perméation ayant un débit stable dans le temps. L’étude réalisée en 2014 a permis de compléter le travail fourni en 2012-2013 sur l’amélioration de la détermination du taux de perméation des tubes de SO2. La remise en route de la balance à suspension électromagnétique après réparation a permis de mettre en évidence la nécessité de stabiliser les tubes en température après leur mise en service au moins pendant trois mois afin d’obtenir un taux de perméation stable dans le temps. Une fois le système optimisé, la première étape a consisté à évaluer la reproductibilité du taux de perméation sur une période de 3 mois, ce qui conduit à une reproductibilité de 0,2 %. Le deuxième volet de cette étude était d’évaluer les facteurs pouvant influer sur le taux de perméation des tubes afin d’en déduire des incertitudes. L’étude de l’influence des variations de pression et du débit de balayage des tubes a montré que ces grandeurs n'influent pas sur le taux de perméation, d’autant plus qu’elles sont régulées avec une bonne précision. Aucune incertitude ne sera donc prise en compte sur ces facteurs dans l’évaluation de l’incertitude sur le taux de perméation. Par contre, les résultats des essais mettent en évidence une influence de la variation de la température du tube sur son taux de perméation qui a été évaluée à 0,8% pour une variation de température de 0,1°C. Ces résultats montrent donc l’importance de bien réguler les tubes à perméation en température si l’on souhaite avoir un taux de perméation stable dans le temps. La valeur de l'incertitude-type sur le taux de perméation liée aux variations de température (0,5%) est égale à 0,23%. Les incertitudes-types ont été ensuite combinées pour estimer l’incertitude élargie sur le taux de perméation des tubes. Cette évaluation conduit à une incertitude élargie relative de 0,8% (k=2) pour un taux de perméation de l’ordre de 550 ng/min. Au terme de cette étude, le calcul d’incertitudes associé à la détermination du taux de perméation a été modifié dans les procédures qualité du LNE afin de prendre en compte les sources d’incertitudes évaluées lors de cette étude. La troisième partie a porté sur la détermination de la quantité d’azote dans le monoxyde d’azote (NO) pur utilisé pour fabriquer les mélanges gazeux gravimétriques. Pour réaliser les étalonnages des mélanges gazeux NO dans l’azote des AASQA, le LCSQA-LNE fabrique des mélanges gazeux de référence gravimétriques. La concentration molaire de ces mélanges gazeux est déterminée à partir des masses de NO et d’azote injectées dans la bouteille et de la composition des composés purs. Le NO pur est un composé relativement instable (évolution dans le temps des concentrations des impuretés) et de pureté médiocre (99,9% annoncée par le producteur) pour une utilisation métrologique. Il est donc nécessaire de réaliser une analyse du NO pur au moment de la fabrication du mélange gazeux de référence gravimétrique pour déterminer la quantité des principales impuretés et en connaître la pureté globale. Le système de mesure utilisé pour l’analyse de l’azote dans le NO pur gazeux (chromatographe en phase gazeuse équipé d’un détecteur TCD) étant vieillissant et présentant des dysfonctionnements, il convenait de le remplacer afin d’assurer la continuité de la fabrication des mélanges gazeux de référence gravimétriques de NO dans l’azote. En 2012, le LCSQA-LNE a réalisé le cahier des charges de l’appareil nécessaire pour effectuer l’analyse de l’azote dans le NO pur gazeux et ensuite, s’est équipé d’un chromatographe en phase gazeuse avec un détecteur à émission Plasma distribué par la société SRA. En 2013, le LCSQA-LNE a optimisé les conditions opératoires du système analytique et commencé à développer la méthode d’analyse. L’année 2014 a permis de finaliser le développement de la méthode d’analyse de l’azote dans le NO pur avec le chromatographe en phase gazeuse. Les travaux menés en 2014 ont permis : ·         De déterminer la reproductibilité du processus de mesure, ·         D’estimer les incertitudes de mesure sur la concentration de l’azote dans le NO pur, ·         De valider la méthode d’analyse sur un mélange gazeux du LCSQA-LNE datant de 2011 conformément aux exigences du système qualité. A partir des résultats obtenus, le protocole d’analyse de l‘azote dans le NO pur a pu être finalisé et fait l’objet d’une procédure technique dans le système qualité du LNE. Au terme de cette étude, le LCSQA-LNE dispose d’une procédure validée pour l’analyse de l’azote contenu dans le NO pur basé sur la mise en œuvre d’un chromatographe en phase gazeuse équipé d’un détecteur à émission Plasma, le NO pur étant ensuite utilisé pour fabriquer des mélanges gazeux de référence gravimétriques destinés au raccordement des étalons des AASQA. La quatrième partie a porté sur le développement d’étalons de référence gravimétriques pour le dioxyde de carbone. Le dioxyde de carbone (CO2) n’a pas d’effet sur la pollution atmosphérique locale, ni sur la santé, contrairement au dioxyde d’azote (NO2). C’est par contre un gaz à effet de serre : de ce fait, les quantités importantes de ce gaz rejetées dans l’atmosphère par les activités humaines (transports, habitat, industrie, agriculture) sont responsables du réchauffement climatique. De même, ce composé fait partie des polluants mesurés en air intérieur. Certaines AASQA réalisent déjà des mesures de CO2 pour déterminer l’évolution des concentrations de ce polluant dans le temps et dans l’espace. Néanmoins, il a été mis en évidence un manque de traçabilité des mesures, ce qui influe directement sur la qualité et la justesse des mesures effectuées. Pour assurer la qualité des mesures de CO2, l’objectif de l’étude était de développer des mélanges gazeux de référence gravimétriques de CO2 adaptés à la mesure du CO2 dans l’air ambiant et l’air intérieur. Par conséquent, pour couvrir les 2 domaines de mesure, il a été décidé de développer des  étalons de référence sur une large gamme de concentrations à savoir de 350 à 6000 µmol/mol. Compte tenu des propriétés physiques du CO2, les mélanges gazeux gravimétriques à des concentrations comprises entre 350 à 6000 µmol/mol sont réalisés avec des incertitudes très faibles. En effet, l’incertitude élargie sur la concentration est de l’ordre de 0,1 % voir inférieure. Cela s’explique par la pureté du CO2 (par rapport à la concentration du mélange gazeux), la stabilité du composé, l’absence d’absorption à l’intérieur des bouteilles et la très faible reproductibilité du comparateur de masse. L’analyse par chromatographie en phase gazeuse avec un détecteur de type TCD donne également de bons résultats à ces concentrations, puisque l’incertitude élargie sur la concentration est de l’ordre de 0,2 % (en prenant en compte l’incertitude du mélange gazeux de référence). Cette incertitude est de 0,4 % lorsqu’un mélange gazeux du NPL est utilisé, puisque l’incertitude sur le mélange gazeux gravimétrique est plus élevée. En tenant compte de ces incertitudes gravimétrique et analytique très faibles, il peut être conclu que les différents mélanges gazeux fabriqués par le LCSQA-LNE sont en accord entre eux et sont en accord avec des mélanges gazeux du NPL. Un écart maximum de 0,03 % est observé entre la concentration gravimétrique et la concentration analytique même en prenant les mélanges gazeux du NPL, fabriqués avec des composés purs différents de ceux du LCSQA-LNE. Au terme de cette étude, le LCSQA-LNE dispose de mélanges gazeux gravimétriques de CO2 à des concentrations comprises entre 350 à 6000 µmol/mol avec des incertitudes très faibles (de l’ordre de 0,1 %) qui pourront être utilisés pour assurer la traçabilité des mesures de CO2 effectuées par les AASQA. La cinquième partiea porté sur le développement de la méthode d’étalonnage des mélanges gazeux de SO2 des AASQA en utilisant les mélanges gazeux de référence gravimétriques de SO2 du LCSQA-LNE. Pour le composé SO2, le LCSQA-LNE a commencé à développer des étalons de référence dans le cadre de la qualité de l'air dès 1991. A l'époque, le traitement des bouteilles de gaz n'était pas optimisé comme à l'heure actuelle, ce qui dans le cas du composé SO2 qui est très réactif, avait pour conséquence un manque de stabilité des concentrations au cours du temps (diminution des concentrations en fonction du temps pouvant s'expliquer par exemple par une adsorption du SO2 sur les parois) : de ce fait, le développement de mélanges gazeux de référence en bouteille par la méthode gravimétrique ne semblait pas adapté au composé SO2. Pour ces raisons, le LCSQA-LNE s'est basé sur la méthode de la perméation pour générer des mélanges gazeux de référence de SO2. Toutefois, d'autres laboratoires comme le National Physical Laboratory (NPL) en Angleterre génèrent actuellement ces mélanges gazeux de référence par dilution de mélanges gazeux gravimétriques de SO2 en bouteille. L’objectif global de cette étude était donc d’une part, de développer des mélanges gazeux de référence gravimétriques de SO2 et d’autre part, d’utiliser ces mélanges gazeux pour étalonner les mélanges gazeux des AASQA ayant une concentration en SO2 de l’ordre de 100 nmol/mol. L'avantage de disposer de 2 méthodes de référence (perméation et dilution de mélanges gazeux de référence) est qu'en cas de dysfonctionnements avérés sur l'une des méthodes, il est possible de mettre tout de suite en œuvre la seconde, évitant ainsi les arrêts des étalonnages. L’étude menée de 2011 à 2013 a permis de développer des étalons de référence gravimétriques pour SO2 ayant une concentration de l’ordre de 10 µmol/mol. En 2014, le LCSQA-LNE a développé la méthode d’étalonnage des mélanges gazeux de SO2 des AASQA basée sur la dilution dynamique des mélanges gazeux de référence gravimétriques de SO2 de l’ordre de 10 µmol/mol. Après optimisation de la méthode, les essais ont montré que pour un même mélange gazeux, les concentrations obtenues d’une part, en utilisant le banc de dilution et d’autre part, en utilisant la méthode d’étalonnage classique par perméation n’étaient pas significativement différentes. Par conséquent, l’étude menée a permis de développer une nouvelle méthode d’étalonnage des mélanges gazeux de SO2 en bouteille basée sur la dilution dynamique de mélanges gazeux de référence fabriqués par le LCSQA-LNE par gravimétrie. La sixième partiea porté sur une étude de faisabilité pour la fabrication de tubes à perméation. Pour les composés tels que le NO2 et le SO2, le LCSQA-LNE a développé des étalons de référence qui sont des mélanges gazeux de référence générés à partir de tubes à perméation du commerce. L’expérience acquise depuis 20 ans dans cette technique montre que les tubes à perméation n’ont pas les mêmes performances d’un fabricant à l’autre ou d’une fabrication à l’autre pour un même fournisseur, notamment en ce qui concerne la pureté du NO2 ou du SO2 et de la stabilité du taux de perméation. L’objectif de cette étude était donc de réaliser une étude de faisabilité pour identifier un protocole de fabrication des tubes à perméation et estimer les coûts inhérents à ce développement. Cette étude montre que le développement du dispositif de fabrication des tubes à perméation est complexe et nécessite la mise en œuvre d’un certain nombre de matériels, soit usinés à façon soit très pointus en termes de conception. Par conséquent, la réalisation de ce dispositif sera couteuse en termes de fonctionnement et d’investissements. Cette étude met également en évidence que le développement d’un tel système impliquera des conditions de sécurité strictes, l’idéal étant de pouvoir dédier un laboratoire uniquement à cette activité. Enfin, la valeur ajoutée du LCSQA-LNE par rapport aux fournisseurs actuels serait d’analyser le composé pur présent dans le tube à perméation. Néanmoins, la détermination de la pureté nécessite de disposer de moyens analytiques permettant de quantifier les impuretés dans les composés d’intérêt mesurés dans le domaine de la qualité de l’air. Cependant, à l’heure actuelle, le LCSQA-LNE ne dispose pas de l’ensemble des techniques permettant de déterminer la pureté de ces composés purs. Ces différents éléments montrent donc d’une part, la complexité de la fabrication des tubes à perméation et d’autre part, des coûts d’investissement et de fonctionnement élevés au regard du faible nombre de tubes à perméation utilisés annuellement par le LCSQA-LNE ou qui pourraient être mis à disposition des AASQA. Par conséquent, le LCSQA-LNE considère qu’il n’est pas souhaitable de poursuivre cette étude en développant une structure appropriée pour la fabrication des tubes à perméation.
Jeudi 1 mars 2018
Rapport
Contrôle qualité de la chaîne nationale d’étalonnage
  L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQA-LNE et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives. Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NOx, NO2, CO et SO2 : Le but est de faire circuler des mélanges gazeux de fraction molaire inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 µmol/mol, NO2 de l’ordre de 200 nmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. Ces mélanges gazeux ont été titrés par le LCSQA-LNE puis envoyés à des niveaux 3. Ces niveaux 3 ont ensuite déterminé la fraction molaire de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les a titrés de nouveau. Des comparaisons interlaboratoires ont été réalisées de mars à décembre 2017 avec les réseaux de mesure ATMO Hauts de France, ORA REUNION, MADININAIR, LIG’AIR, Qualitair Corse, ATMO Occitanie, AIR BREIZH, ORA GUYANE et AIR PL. En règle générale, les AASQA communiquent au LCSQA-LNE les fractions molaires mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures à celles du LCSQA-LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter les résultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant sur l'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit à définir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les fractions molaires déterminées par le LCSQA-LNE et celles déterminées par les niveaux 3 après élimination des valeurs jugées aberrantes. Les résultats montrent que : Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité des mesures de SO2, de NO/NOx, de NO2 et de CO aux étalons de référence fonctionne correctement ; Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore les écarts relatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.   Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O3 : Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans les niveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une fraction molaire voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 9 niveaux 3 en 2017, à savoir : ATMO NORMANDIE, AIR PACA, ATMO Haut de France, ORA Réunion, ATMO Grand Est, ATMO Occitanie, ATMO Nouvelle-Aquitaine, Qualitair Corse et ORA GUYANE. En 2016, une comparaison avec GWAD’AIR avait été menée ; néanmoins, l’étalonnage retour du générateur n’avait pu être effectué par le LCSQA-LNE qu’en mars 2017, vu les problèmes de renvoi du générateur vers la métropole. Par conséquent, les résultats n’ayant pu être intégrés dans le rapport de 2016, ils ont été rajoutés dans le présent rapport. Les résultats obtenus en 2017 montrent que les écarts relatifs entre les fractions molaires en O3 déterminées par les 10 réseaux de mesure et celles déterminées par le LCSQA-LNE sont compris entre +4% et -6% si on ne prend pas en compte la 5ème mesure (-8,3 %) et la 7ème mesure (-6,5 %) du réseau 6, ainsi que la 3ème mesure (-7,4 %) du réseau 8.   De plus, les écarts relatifs observés entre les valeurs des AASQA et du LCSQA-LNE sont aléatoirement répartis de part et d’autre de zéro.
Jeudi 15 décembre 2022
Rapport
Cahier des charges dédié au développement d’un Générateur d’Aérosols de Référence Portable
La microbalance à variation de fréquence et la jauge radiométrique sont des appareils de mesure très répandus au sein des Associations Agréées de Surveillance de la Qualité de l’Air (AASQA). Ces instruments permettent de mesurer en continu la concentration massique des particules en suspension dans l’air (en µg.m-3) alors que la méthode gravimétrique nécessite des pesées postérieures au prélèvement. A l’heure actuelle, ces appareils sont contrôlés à l’aide de cales étalons au niveau d’un paramètre intermédiaire (fréquence, densité surfacique) mais sans tenir compte de la phase particulaire prélevée. C’est pourquoi le LCSQA-LNE a développé une méthode de contrôle en masse des microbalances à variation de fréquence et des jauges radiométriques. La méthode consiste à générer des particules à des concentrations connues et stables et à les faire prélever par les appareils dans des conditions proches de leur fonctionnement « normal ». Un système de génération d’aérosols, nommé GARP pour « Générateur d’Aérosol de Référence Portable », a ainsi été développé puis caractérisé (Gaie-Levrel et al., 2017). Son protocole d’utilisation a été optimisé par des expériences menées sur le terrain entre 2013 et 2017 (LCSQA, 2013-2017). A la suite de ces travaux, le LCSQA-LNE propose dans ce rapport un cahier des charges technique (CDC) permettant aux AASQA de fabriquer leur propre système GARP afin de vérifier le bon fonctionnement des appareils mesurant les concentrations massiques particulaires en temps réel.   Abstract Technical specification for the development of a Portable Reference Aerosol Generator The frequency-varying microbalance and radiometric gauge are widely used measuring devices within Approved Air Quality Monitoring Associations (AASQA). These instruments make it possible to continuously measure the mass concentration of particles suspended in the air (in µg.m-3) while the gravimetric method requires weighing after sampling. It is important to note that these devices are checked using calibration filter but without taking into account the particulate phase sampled. This is why the LCSQA-LNE has developed a method for mass control of frequency-varying microbalances and radiometric gauges. The method consists of generating particles at known and stable concentrations and sampling them by the instrument under conditions close to their “normal” operation. An aerosol generation system, named GARP for "Portable Reference Aerosol Generator", was thus developed and then characterized (Gaie-Levrel et al., 2017). Its protocol for use was optimized by experiments carried out in the field between 2013 and 2017 (LCSQA, 2013-2017). The LCSQA-LNE proposes in this report a technical specification allowing the AASQA to manufacture their own GARP system in order to verify the correct operation of instruments dedicated to the particulate mass concentrations measurements in real time.
Jeudi 30 juin 2022
Rapport
Amélioration de la qualité des étalonnages
Pour répondre aux exigences de qualité des mesures de la directive 2008/50/CE et garantir la traçabilité des mesures réalisées par les Associations Agréées de Surveillance de la Qualité de l’Air (AASQA), le LCSQA-LNE a mis en place une chaîne nationale de traçabilité métrologique pour le polluant réglementé NO2. Dans ce cadre, les étalonnages des mélanges gazeux de NO2 des AASQA sont réalisés en suivant une méthode d’étalonnage qui implique l’utilisation d’un analyseur basé sur le principe de la chimiluminescence et qui permet de titrer le NO2 de façon indirecte. En effet, il est équipé d’un four de conversion qui va convertir le NO2 en NO et c’est alors le NO qui est quantifié. Cette conversion peut ne pas être égale à 100% en fonction du type, de l’âge ou de l’encrassement du four considéré. De plus, ce four de conversion peut convertir d’autres polluants que le NO2. Enfin, le temps de réponse de ce type d’instrument est relativement long. Le LCSQA-LNE s’est donc équipé d’un analyseur effectuant une mesure directe du NO2, à savoir un analyseur Télédyne modèle T500U basé sur la technique CAPS (cavity attenuated phase shift spectroscopy). Le temps de réponse de l’analyseur T500U est plus faible que celui basé sur la chimiluminescence (gain de temps) et présente de meilleures performances métrologiques (répétabilité, linéarité, reproductibilité…). Cette étude a permis d’optimiser la méthode d’étalonnage utilisée dans le cas du NO2 en mettant en œuvre l’analyseur spécifique Télédyne T500U à la place de celui basé sur la chimiluminescence (Megatec 42i) afin d’améliorer la qualité des résultats en termes de justesse et d’incertitude, et ceci dans le contexte du contentieux européen. Les résultats de l’étude montrent que la répétabilité et la reproductibilité des mesures réalisées avec l’analyseur T500U (CAPS) sont respectivement de 0,1% et 0,2% de la fraction molaire analysée. Les résultats obtenus pour 9 mélanges gazeux de NO2 étalonnés avec les deux analyseurs (T500U et 42i), conduisent à des écarts normalisés inférieurs à 1, ce qui montre que les fractions molaires déterminées avec les 2 analyseurs ne sont pas significativement différentes. L’erreur de justesse de la méthode avec l’analyseur T500U est donc considérée comme étant non significative. Les incertitudes élargies relatives sur la fraction molaire analysée avec l’analyseur T500U sont de l’ordre de 1%, donc équivalentes à celles obtenues avec l’analyseur 42i. Au vu de ces résultats, la méthode d’étalonnage des mélanges gazeux de NO2 avec l’analyseur T500U est considérée comme validée et sera appliquée en 2022. Les documents qualité ont également été rédigés (procédure technique, fond de calcul des fractions molaires et des incertitudes, fond de certificat d’étalonnage et dossier de validation). Néanmoins, la procédure d’étalonnage avec l’analyseur 42i sera conservée et pourra être utilisée de nouveau en cas de défection de l’analyseur T500U.     Improvement of the quality of calibrations In order to meet the measurement quality requirements of Directive 2008/50/EC and to guarantee the traceability of measurements carried out by the Air Quality Monitoring Networks (AASQAs), LCSQA-LNE has set up a national metrological traceability chain for the regulated pollutant NO2. Within this framework, calibrations of NO2 gas mixtures performed for the monitoring networks are carried out using a calibration method that involves the use of an analyser based on chemiluminescence which enables NO2 to be measured indirectly. Indeed, it is equipped with a catalyst converter that converts NO2 into NO and it is then the NO that is quantified. The conversion rate may not be equal to 100% depending on the type, age and fouling of the converter. Moreover, this catalyst converter can convert other pollutants than NO2. Finally, the response time of this type of instrument is relatively long. LCSQA-LNE has therefore equipped itself with an analyser that measures NO2 directly, i.e. a Télédyne model T500U analyser based on the CAPS (cavity attenuated phase shift spectroscopy) technique. The response time of the T500U analyser is shorter than that based on chemiluminescence (time saving) and presents better metrological performances (repeatability, linearity, reproducibility...). This study allowed the optimisation of the calibration method used in the case of NO2 by implementing the specific Télédyne T500U analyser instead of the one based on chemiluminescence (Megatec 42i) in order to improve the quality of the results in terms of accuracy and uncertainty. The results of the study show that the repeatability and reproducibility of the measurements carried out with the T500U analyser (CAPS) are respectively 0.1% and 0.2% of the amount fraction analysed. The results obtained for 9 NO2 gas mixtures calibrated with the two analysers (T500U et 42i), lead to normalised deviations lower than 1, which shows that the amount fractions determined with the 2 analysers are not significantly different. The accuracy error of the method with the T500U analyser is therefore considered to be insignificant. The relative expanded uncertainties on the amount fraction analysed with the T500U analyser are of the order of 1%, thus equivalent to those obtained with the chemiluminescence-based analyser. In view of these results, the calibration method for NO2 gas mixtures with the T500U analyser is considered validated and will be applied in 2022. The quality documents have also been drafted (technical procedure, file for calculating amount fractions and uncertainties, calibration certificate and validation file). Nevertheless, the calibration procedure with the 42i analyser will be kept and can be used again in case of defection of the T500U analyser.
Mardi 2 juillet 2024
Rapport
Suivi du financement du dispositif national de surveillance de la qualité de l’air sur la période 2017-2021
L’article 27 de l’arrêté du 16 avril 2021 relatif au dispositif national de surveillance de la qualité de l’air ambiant dispose que le LCSQA est tenu d’« effectuer le suivi du coût de la mise en œuvre de la surveillance » de la qualité de l’air. Tel est l’objet de ce rapport qui analyse les évolutions budgétaires du dispositif, sur les années 2017-2021. En 2021, le financement total du dispositif national de surveillance de la qualité de l’air est de 87,1 M€, ce qui représente une augmentation de 3% sur 5 ans et de 14% par rapport à l’année 2020. En 2021, l’Etat finance le dispositif national de surveillance de la qualité de l’air par des subventions, à hauteur de 45% et par des moindres recettes fiscales via la taxe générale sur les activités polluantes (TGAP) à hauteur de 26%. La part du financement des AASQA représente en moyenne 92,9% du financement total de la surveillance de la qualité de l’air sur la période. Cette proportion est passée de 93,3% en 2017 à 92,9% du financement total en 2021. Sur ces 5 années, les financements des AASQA ont augmenté de 2,4% passant de 78,9 M€ en 2017 à 80,8 M€ en 2021. La part du financement du LCSQA représente en moyenne 6,7% du financement total de la surveillance de la qualité de l’air sur la période ; il est passé de 6,0% du financement total du dispositif en 2017 à 6,7% en 2021. Le financement du LCSQA a augmenté de 18,3% sur cette période, passant de 5,1M€ en 2017 à 6,0M€ en 2021. La part du financement de la mise en œuvre opérationnelle de Prev’Air représente en moyenne 0,4% du financement total de la surveillance de la qualité de l’air sur la période. Le financement de la mise en œuvre opérationnelle de la plate-forme Prev’Air est en baisse de 44,0% sur 5 ans, passant de 536k€ en 2017 à 300k€ en 2021. De par sa structure et son mode de financement, seul le coût de mise en œuvre opérationnelle du système Prev’Air, hors travaux de développement scientifique, peut être estimé aisément.   Funding follow-up for the national air quality monitoring system over the 2017-2021 period Article 27 of the order of April 16, 2021 relating to the national ambient air quality monitoring system provides that the LCSQA is required to "monitor the cost of implementing monitoring" of air quality. This is the purpose of this report, which analyzes the quantified changes to the system over the last 5 years. In 2021, the total funding for the national air quality monitoring system is €87.1 million, which represents an increase of 3% over 5 years. In 2021, the State will finance the national air quality monitoring system through subsidies, up to 45% and through lower tax revenue via the general tax on polluting activities (TGAP) up to 26%. AASQA funding represents 92.9% of total air quality monitoring funding over the period, increasing over 5 years from 93.3% in 2017 to 92.9% of total funding in 2021. In 5 years, AASQA funding has increased by 2.4% from €78.9 million in 2017 to €80.8 million in 2021. The financing of the LCSQA represents 6.7% over the period with an increase over 5 years, going from 6.0% of the total financing of the scheme in 2017 to 6.7% in 2021. Funding for the operational implementation of the Prev'Air platform is down 44% over 5 years, from €536k in 2017 to €300k in 2021. Due to its structure and method of financing, only the cost of operational implementation of the Prev'Air system, excluding scientific development work, can be easily estimated. Funding for the operational implementation of Prev’Air represents 0.4% of the total funding for air quality monitoring over the period.
Jeudi 18 mars 2021
Rapport
Développement d’étalons de référence pour l’ammoniac (NH3)
La mesure de l'ammoniac (NH3) dans l'air ambiant est un sujet sensible et prioritaire en raison de ses effets nuisibles sur la santé humaine et sur les écosystèmes. La Directive européenne sur les plafonds d'émissions nationaux (NEC) 2001/81/EC, définit des plafonds d'émission individuels notamment pour l’ammoniac pour chaque État membre, basés sur le Protocole de Göteborg. Cependant, cette directive ne donne aucune recommandation permettant de réaliser des mesures fiables d'ammoniac dans l’air ambiant notamment en termes d’étalonnage des appareils (procédures, fréquences…), d’incertitude maximale tolérée, de procédures d’assurance qualité et de contrôle qualité (QA/QC) aussi bien que d'infrastructure pour assurer la traçabilité métrologique des mesures. Pour pallier ce manque de traçabilité métrologique, le LCSQA-LNE a développé un étalon de référence d’ammoniac dans l’azote basé sur la méthode de génération dynamique par perméation en phase gazeuse sur une gamme de fractions molaires allant de 1 à 400 nmol/mol, en collaboration étroite avec la société 2MProcess selon le cahier des charges établi par le LCSQA-LNE. L’étalon de référence développé pour assurer la traçabilité des mesures de NH3 consiste en un banc à perméation avec des mesures de débit très précises (débitmètres massiques) et une maitrise de la pesée du tube à perméation. Ce système permet de garantir des incertitudes élargies relatives sur la fraction molaire d’ammoniac dans le gaz étalon généré inférieures à 2 % (k=2). Ce résultat est très satisfaisant au regard des difficultés engendrées par le niveau très faible des fractions molaires d’intérêt et les problèmes d’adsorption de l’ammoniac sur les surfaces en contact. Le développement du banc de référence d’ammoniac a déjà suscité un grand intérêt au sein du dispositif de surveillance de la qualité de l’air, puisqu’en fin d’année 2020, le LCSQA-LNE a réalisé l’étalonnage de 4 analyseurs pour les Associations Agréées de la Surveillance de la Qualité de l’Air (AASQA). Ces demandes pré-augurent de l’intérêt porté par les AASQA au développement de ce nouvel étalon de référence gazeux permettant de garantir la traçabilité et la qualité des mesures de NH3 réalisées sur le territoire français. De plus en 2021, le LCSQA en collaboration avec les AASQA définira une stratégie de surveillance nationale pour ce polluant.   Development of reference standard for ammonia (NH3) The measurement of ammonia (NH3) in ambient air is a sensitive and priority subject because of its harmful effects on human health and ecosystems. The European Directive on National Emissions Ceilings (NEC) 2001/81/EC sets individual emission ceilings, particularly for ammonia for each Member State, based on the Gothenburg Protocol. However, this directive does not give any recommendations for reliable ammonia measurements in ambient air, particularly in terms of calibration of devices (procedures, frequencies, etc.), maximum allowable uncertainty, quality assurance and quality control (QA/QC) procedures as well as infrastructure to ensure the metrological traceability of the measurements. To remedy the lack of metrological traceability, the LCSQA-LNE has developed a reference standard for ammonia in nitrogen based on the dynamic gas phase permeation generation method over a range of amount fractions ranging from 1 to 400 nmol/mol, in close collaboration with 2MProcess according to the specifications established by the LCSQA-LNE. The reference bench developed to ensure the traceability of NH3 measurements consists of a permeation bench with very precise flow measurements (mass flow meters) and with very precise control of the weighing of the permeation tube. This system ensures that the expanded uncertainties (k=2) on the amount fraction of ammonia in the standard gas generated are lower than 2%. This result is very satisfactory given the difficulties caused by the very low level of amount fractions of interest and by the problems of ammonia adsorption on contact surfaces. The development of the ammonia reference bench has already generated a great deal of interest in the air quality monitoring system, since at the end of 2020, the LCSQA-LNE carried out the calibration of 4 analyzers for the Air Quality Monitoring Associations (AASQA). These requests pre-augur the interest of the AASQA in the development of this new gas reference standard to guarantee the traceability and the quality of the NH3 measurements carried out on French territory. In addition, in 2021, the LCSQA, in collaboration with the AASQA, will define a national monitoring strategy for this pollutant. .
Lundi 7 avril 2014
Rapport
Contrôle Qualité de la chaîne nationale d’étalonnage
L'objectif de cette étude est d’effectuer des comparaisons interlaboratoires entre le LCSQALNE et les AASQA pour s’assurer du bon fonctionnement de la chaîne nationale d’étalonnage et pouvoir détecter d’éventuelles anomalies auxquelles il conviendra d’apporter des actions correctives.Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en NO/NO x , NO 2 , CO et SO 2 : Le but est de faire circuler des mélanges gazeux de concentration inconnue (NO/NOx de l’ordre de 200 nmol/mol, CO de l’ordre de 9 μmol/mol et SO2 de l’ordre de 100 nmol/mol) dans les niveaux 3 pour valider les différents raccordements effectués dans le cadre de la chaîne nationale d’étalonnage. En 2010, des mélanges gazeux de NO2 de l’ordre de 200 nmol/mol ont été rajoutés.Ces mélanges gazeux ont été titrés par le LCSQA-LNE puis envoyés à des niveaux 3.Ces niveaux 3 ont ensuite déterminé la concentration de ces mélanges gazeux avant et après réglage de l’analyseur de station avec l’étalon de transfert 2-3, puis les ont renvoyés au LCSQA-LNE qui les atitrés de nouveau. En 2013, 3 comparaisons interlaboratoires ont été réalisées : - Avec les réseaux de mesure QUALITAIR CORSE, ATMO NPDC, AIR PL, AIRPARIF et AIR LR de mars à mai 2013, - Avec les réseaux de mesure ATMO PC, LIGAIR, ORA (Guyane) et ATMO Picardie d’avril àaoût 2013, - Avec les réseaux de mesure AIR LORRAINE, MADININAIR, AIR BREIZH et ORA (La Réunion) de septembre à janvier 2014. En règle générale, les AASQA communiquent au LCSQA-LNE les concentrations mesurées soit sans les incertitudes élargies associées, soit avec des incertitudes de mesure inexploitables (inférieures àcelles du LCSQA-LNE, valeurs très élevées…). Dans ces conditions, il n'est pas possible de traiter lesrésultats par des méthodes statistiques. Par conséquent, dans le présent document, le traitement des données est effectué en s'appuyant surl'ensemble des résultats obtenus depuis 2002 lors des campagnes précédentes qui ont conduit àdéfinir des intervalles maximums dans lesquels doivent se trouver les écarts relatifs entre les concentrations déterminées par le LCSQA-LNE et celles déterminées par les niveaux 3 aprèsélimination des valeurs jugées aberrantes.Globalement, en 2013, lorsque les concentrations aberrantes sont éliminées, les écarts relatifs entre le LCSQA-LNE et les niveaux 3 restent dans ces intervalles qui sont les suivants : - ± 7% avant et après réglage pour une concentration en SO2 voisine de 100 nmol/mol ; - ± 6% avant et après réglage pour des concentrations en NO/NOx et en NO2 voisines de 200 nmol/mol ; -  ± 6% avant réglage et ± 4% après réglage pour des concentrations en CO voisines de 9 μmol/mol. Les résultats montrent que : - Globalement la chaîne nationale d'étalonnage mise en place pour assurer la traçabilité desmesures de SO2, de NO/NOx et de CO aux étalons de référence fonctionne correctement. - Le fait de régler l’analyseur avec l’étalon de transfert 2-3 améliore de façon significative les écartsrelatifs, ce qui met en évidence une dérive de la réponse des analyseurs au cours du temps.Contrôle qualité du bon fonctionnement de la chaîne d’étalonnage en O 3 :Comme pour les composés SO2, NO/NOx, CO et NO2, le but est de faire circuler, dans lesniveaux 3, un générateur d’ozone portable délivrant un mélange gazeux à une concentration voisine de 100 nmol/mol pour valider les différents raccordements effectués dans le cadre de la chaînenationale d’étalonnage. La présente comparaison interlaboratoires a été effectuée avec 12 niveaux 3 en 2013, à savoir :AIRAQ, ORA (La Réunion), AIR LR, AIR RA, QUALITAIR CORSE, AIR NORMAND, ATMOSFAIR,ATMO FC, AIR LORRAINE, ORA (Guyane), ATMO PC et ATMO PICARDIE. Les résultats obtenus en 2013 montrent que les écarts relatifs entre les concentrations en O3déterminées par les 12 réseaux de mesure et celles déterminées par le LNE sont compris entre - 8 % et + 4%.Cependant, la première valeur du réseau 13 présente un écart relatif plus important (- 7,1%) avec la concentration moyenne du LNE. En enlevant la valeur de cet écart, les écarts relatifs entre les concentrations en O3 déterminées par les 12 réseaux de mesure et celles déterminées par le LNEsont compris dans un intervalle de ±4 %. De plus, les écarts relatifs observés entre les valeurs des AASQA et du LNE sont aléatoirementrépartis de part et d’autre de zéro.
Mardi 31 juillet 2012
Rapport
Maintien et amélioration des chaînes nationales d’étalonnage Rédaction d’une plaquette synthétique relative à la qualité des mesures
En 1996, sous l’impulsion du Ministère chargé de l'Environnement, un dispositif appelé « chaîne nationale d’étalonnage » a été conçu et mis en place afin de garantir, sur le long terme, la cohérence des mesures réalisées dans le cadre de la surveillance de la qualité de l’air pour les principaux polluants atmosphériques gazeux réglementés. Ce dispositif a pour objectif d’assurer la traçabilité des mesures de la pollution atmosphérique en raccordant les mesures effectuées dans les stations de surveillance à des étalons de référence spécifiques par le biais d’une chaîne ininterrompue de comparaisons appelée « chaîne d’étalonnage ».   Compte tenu du nombre élevé d’Associations Agréées de Surveillance de la Qualité de l'Air (AASQA), il était peu raisonnable d’envisager un raccordement direct de l'ensemble des analyseurs de gaz des stations de mesure aux étalons de référence nationaux, malgré les avantages métrologiques évidents de cette procédure. Pour pallier cette difficulté, il a été décidé de mettre en place des procédures de raccordement intermédiaires gérées par un nombre restreint de laboratoires d’étalonnage régionaux ou pluri-régionaux (appelés également niveaux 2) choisis parmi les acteurs du dispositif de surveillance de la qualité de l'air (AASQA et LCSQA-EMD). Par conséquent, ces chaînes nationales d’étalonnage sont constituées de 3 niveaux : le LCSQA-LNE en tant que Niveau 1, des laboratoires d’étalonnage inter-régionaux (au nombre de 8) en tant que Niveau 2 et les stations de mesures en tant que Niveau 3.   Dans le cadre de ces chaînes nationales d’étalonnage, le LCSQA-LNE raccorde tous les 3 mois les étalons de dioxyde de soufre (SO2x), d'ozone (O3), de monoxyde de carbone (CO) et de dioxyde d’azote (NO2) de chaque laboratoire d’étalonnage. De plus, depuis plusieurs années, le LCSQA-LNE raccorde directement les étalons debenzène, toluène et o-xylène (BTX) de l’ensemble des AASQA, car au vu dunombre relativement faible de bouteilles de BTX utilisées par les AASQA, il a été décidé en concertation avec le MEDDTL qu’il n’était pas nécessaire de créer une chaîne d’étalonnage à 3 niveaux. Depuis août 2011, le LNE certifie également les concentrations d’éthylbenzène, de m-xylène et de p-xylène en plus du benzène, du toluène et de l’o-xylène pour les mélanges gazeux de BTEX des AASQA. Le tableau ci-après résume les étalonnages effectués depuis 2006 par le LCSQA-LNE pour les différents acteurs du dispositif de surveillance de la qualité de l’air (AASQA, LCSQA- INERIS et LCSQA-EMD), tous polluants confondus (NO/NOx, NO2, SO2, O3, CO, BTEX et Air zéro).       Nombre   2006 2007 2008 2009 2010 2011 Raccordements Niveau 1/ Niveaux 2 146 180 180 180 180 180 Raccordements BTEX 38 42 37 40 38 33 Raccordements LCSQA-INERIS 12 21 18 20 36 39 Raccordements ORA 0 8 6 6 5 7 Raccordements Madininair 16 24 13 25 19 13 Vérification « Air zéro » (Airparif, Oramip, APL, ORA) 4 4 4 7 6 12   Somme totale des raccordements 216 279 258 278 284 284   Ce rapport fait également la synthèse des problèmes techniques rencontrés en 2011 par le LCSQA-LNE lors des raccordements, à savoir : - Les problèmes rencontrés sur les matériels du LCSQA-LNE, -  Les problèmes rencontrés au niveau des raccordements, -  Les problèmes rencontrés au niveau du transport des matériels. Concernant la mesure des particules, le bilan sur les mises à disposition de moyens de contrôle d’étalonnage d’appareils effectués par le LCSQA-EMD dans le cas des particules est donné dans le présent rapport. Il convient de rappeler que la chaîne d’étalonnage nationale ne concernant que les polluants atmosphériques gazeux (SO2, NO, NO2, CO, O3 et BTX), une mise à disposition de moyens de contrôle de l'étalonnage des analyseurs PM10 et PM2.5 sur site est assurée dans l’attente de l’intégration de ces polluants dans la chaîne. Ces dispositifs de transfert consistent en des cales étalon pour les analyseurs automatiques de particules (microbalances à variation de fréquence et jauges radiométriques) permettant aux AASQA de vérifier l’étalonnage et la linéarité de leurs appareils directement en station de mesure, en y associant le débit de prélèvement. Pour l’année 2011, 14 mises à disposition ont été effectuées. Le respect de la consigne pour le débit de prélèvement est globalement constaté pour 29 appareils vérifiés dont 10 FDMS (soit environ 6% du parc d’analyseurs automatiques actuellement en station de mesure) et les essais montrent un comportement correct de l’ensemble des appareils contrôlés. Concernant le contrôle de la constante d’étalonnage de la microbalance, la moyenne de la valeur absolue de l’écart observée en AASQA varie entre 0,64 et 1,54% (soit pour l’ensemble des AASQA contrôlées une moyenne ± écart-type de 0,97 ± 0,34%). L’étendue de l’écart réel constaté sur le terrain est restreinte car comprise entre -4,1 et +2,7 % pour 62 appareils contrôlés dont 20 FDMS (soit environ 12% du parc de microbalances TEOM actuellement en station de mesure). Le contrôle de la linéarité montre l’excellent comportement des appareils sur ce paramètre sachant que 26 appareils (dont 6 FDMS) ont été contrôlés soit environ 5% du parc de microbalances TEOM actuellement en station de mesure. Concernant les jauges radiométriques MP101M de marque Environnement SA, un contrôle de cale étalon d’AASQA (vérification par le LCSQA-EMD des valeurs de cales étalon fournies par le constructeur) ainsi qu’une mise à disposition de cales étalon permettant le contrôle sur site de l’étalonnage de jauges ainsi que leur linéarité ont été assurés. Comme pour la microbalance, le contrôle du moyen d’étalonnage et la linéarité montre l’excellent comportement des jauges sur ces paramètres sachant qu’a minima 4 appareils ont été contrôlés soit environ 8% du parc de jauges actuellement en station de mesure. Le comportement de cette « chaîne de contrôle pour la mesure des particules » assurée par le LCSQA-EMD peut être qualifié de satisfaisant. Les résultats obtenus pour les microbalances TEOM (concernant les paramètres débit de prélèvement, étalonnage et linéarité) et pour les radiomètres bêta MP101M (concernant le contrôle de moyens d’étalonnage) sont des éléments probants de l’Assurance Qualité / Contrôle Qualité (QA/QC) appliquée aux analyseurs automatiques de particules en suspension et sont des sources d’information nécessaires dans le cadre du calcul de l’incertitude de mesure sur ce type d’appareil. Le maintien et l’extension du programme QA/QC pour les analyseurs automatiques de particules rentrent dans les missions pérennes du LCSQA. L’extension à des modèles de jauges radiométriques autres que la MP101M d’Environnement SA est à envisager, sous réserve de leur homologation par le Dispositif National de Surveillance de la Qualité de l’Air. Par ailleurs, en 2010, le LNE a rédigé un document de synthèse dont l’objectif était de réaliser un bilan du dispositif d'assurance qualité actuellement mis en œuvre sur le territoire français (fonctionnement des chaînes d'étalonnage, bilan des exercices d'intercomparaison…) pour garantir la qualité des mesures effectuées par les AASQA dans l’air ambiant. En 2011, le LNE a rédigé un projet de plaquette de 4 pages résumant le document de synthèse. Le but de cette plaquette est de rendre plus visibles les actions entreprises par la France pour garantir la qualité des mesures effectuées par les AASQA dans l'air ambiant et pourra être distribué lors de réunions, de congrès, de séminaires…
Actualité
Le LCSQA dévoile la nouvelle identité visuelle de son site web et de son logo !
Le LCSQA modernise son site web. La refonte graphique et ergonomique de lcsqa.org répond aux attentes des utilisateurs et sa consultation est désormais adaptée aux tablettes et mobiles.
Jeudi 14 avril 2022
Rapport
Analyse du Folpel, Chlorothalonil, Dicofol et Cymoxanil par méthodes chromatographique
Dans une précédente note[1] (Etat de l’art et analyse critique des méthodes de mesure de pesticides – Premières recommandations) portant sur l’analyse des pesticides, il a été identifié un besoin d’harmonisation et de validation des méthodes, ainsi qu’un besoin de développement des méthodes d’analyse pour des substances orphelines. Cette étude a donc pour objectif de développer des méthodes d’analyse des molécules suivantes qui posent actuellement problème à certains laboratoires d’analyses de routine :   le dicofol, le folpel, le chlorothalonil et le cymoxanil, et de proposer des recommandations pour leur analyse et/ou leur stockage. La principale difficulté de ce travail a été d’isoler les causes qui engendrent des problèmes d’analyse ou d’éventuelles dégradations des composés. En effet, définir des conditions adaptées pour l’analyse et/ou le stockage de pesticides « instables » nécessite de tenir compte de plusieurs paramètres en parallèle : sa compatibilité avec le solvant utilisé, ses niveaux de concentrations, les conditions de stockage (températures, durée…) et les conditions d’analyses en tant que tel.   Une méthode d’analyse par chromatographie en phase gazeuse couplée à la spectrométrie de masse (GC-MS) mettant en œuvre l’injection programmée en température, a été développée pour le chlorothalonil, le folpel et le dicofol. Les paramètres analytiques (programmations en température du four et de l’injecteur, volume injecté, débit de fuite…)   ont été optimisés. Une méthode d’analyse par chromatographie en phase liquide couplée à la spectrométrie de masse en tandem (LC-MS2) a été développée pour le cymoxanil. Des tests de stabilité montrant l’impact des conditions de stockage (tels que les solvants utilisés, les températures, la durée de stockage) et des conditions d’analyse, ont permis de mettre en évidence certains facteurs pouvant influer sur la stabilité des composés. Des solutions ont été testées pour y remédier telles que l’ajout d’analyte protectant, l’acidification des solvants ou encore la mise en œuvre de la dilution isotopique.   [1] LCSQA/LNE-INERIS- DRC-20-201686-02791A / Etat de l’art et analyse critique des méthodes de mesure de pesticides – Premières recommandations     Analysis of Folpel, Chlorothalonil, Dicofol et Cymoxanil by chromatographic methods On the basis of the previous critical analyses for pesticides and presented in a technical note, a prioritisation of the needed metrological work has been carried out jointly by the LCSQA-LNE and the LCSQA-Ineris. So, it was agreed that the LCSQA-LNE would work on methods that would allow the analysis of molecules that are currently problematic in some routine analytical laboratories: the dicofol, the folpel, the chlorothalonil and the cymoxanil, and would propose recommendations for their analysis and/or storage. The main difficulty of this work was to isolate the possible causes of degradation of the compounds to see the effects. Indeed, defining “good” analysis or storage conditions for  “unstable” pesticides requires taking into account several parameters in parallel: compatibility with the solvent used, concentration levels in solutions, storage conditions (temperatures, vials used, etc.) and the conditions of the analysis itself. An analysis method by gas chromatography coupled with mass spectrometry (GC-MS) using temperature-programmed injection has been developed for chlorothalonil, folpel and dicofol. Analytical parameters (oven and injector programming temperature, injected volume, flow rate, etc.) have been optimized to minimize degradation of compounds. An analysis method using liquid chromatography coupled with tandem mass spectrometry (LC-MS2) has been developed for cymoxanil. Stability tests varying according to the conditions of the study, such as the solvents used, the temperatures, the duration and the storage conditions, made possible to identify the factors that could cause the degradation of the compounds. Solutions have been proposed to take them into account, such as the addition of analyte protectant, acidification of solvents or the implementation of isotopic dilution.