Résultats de la recherche

2321 résultats correspondent à PM10
Jeudi 27 décembre 2018
Procédure préfectorale
Procédure du 28/12/2018 - ISERE - Information & Recommandation
Jeudi 27 décembre 2018
Procédure préfectorale
Procédure du 27/12/2018 - ISERE - Information & Recommandation
Mercredi 10 février 2016
Rapport
Normalisation 2015
Le cadre régalien et normatif de la surveillance de la qualité de l’air en France a évolué en 2015 en raison du processus de révision des 2 Directives européennes en vigueur qui a abouti fin août à la parution d’un nouveau texte modifiant plusieurs annexes des directives du Parlement européen et du Conseil 2004/107/CE et 2008/50/CE. Ces annexes concernent les méthodes de référence, les règles portant sur la validation des données et l'emplacement des points de prélèvement pour l'évaluation de la qualité de l'air ambiant. S’agissant des méthodes de référence, il s’agit essentiellement d’une mise à jour documentaire via la mention des référentiels normatifs parus depuis 2008. Outre le traitement des contentieux (en cours pour les PM10 et pour le NO2), 2015 a vu la parution du 1er Plan National de la Surveillance de la Qualité de l’Air (PNSQA) qui décrit la stratégie nationale de surveillance de la qualité de l’air sur la période 2016‐2020. Ce texte de référence va devoir être repris au niveau régional via les PRSQA des AASQA dont la 3ème version est prévue à partir de 2016, en tenant compte de la réforme territoriale et la nouvelle carte de régions entraînant la fusion des AASQA concernées. En tant que Laboratoire de Référence dans le domaine de la Qualité de l’Air notifié par le Ministère en charge de l’environnement, le LCSQA a pour missions l’aide à l’application correcte des textes de référence ainsi que l’assurance de la qualité des mesures dans le respect des exigences des Directives. Pour cela, il participe aux travaux de normalisation nationale (AFNOR – Association Française de NORmalisation) et européenne (CEN – Comité Européen de Normalisation) et assure la transmission de l’information auprès des acteurs du Dispositif National de Surveillance, notamment au travers des Groupes de Travail et des Commissions de Suivi. Il contrôle la correcte application des exigences techniques et législatives lors des audits de vérification technique. Les travaux décrits dans le présent rapport permettent au LCSQA d’apporter au Dispositif National de Surveillance les éléments d'une vision d'ensemble des activités de surveillance de la qualité de l'air sur tout le territoire, et d’assurer leur cohérence avec les contraintes régaliennes, techniques en tenant compte de la réalité du terrain. Dans la continuité des années précédentes, les travaux du LCSQA en 2015 ont permis : d’assurer une application homogène des textes de référence sur le territoire national en vue de leur respect, de contribuer aux choix stratégiques & économiques du Dispositif National, de valoriser la position française au niveau européen. Ainsi, en 2015, les travaux du LCSQA en matière de normalisation ont été les suivants : participation aux travaux de normalisation européenne, nationale et internationale: normalisation européenne (14 GT du CEN TC 264 sur l’air ambiant extérieur et intérieur impliquant 10 experts du LCSQA. 3 nouveaux GT ont été créé en 2015 : le GT42 sur les micro‐capteurs pour la qualité de l’air, le GT43 sur les objectifs de qualité des modèles  et le GT44 sur l’identification des sources), normalisation nationale (3 Commissions de l’AFNOR impliquant 4 experts du LCSQA). Il est à noter que l’année 2015 a vu la réactivation de 3 GT Ad Hoc dans le cadre de la révision de normes AFNOR (Normes sur les pesticides, sur l’étalonnage et sur la  mesure dans les dépôts, impliquant 5 experts du LCSQA), normalisation internationale (3 GT de l’ISO TC 158 sur l’analyse des gaz, en lien avec la Commission AFNOR E29EG « Préparation et utilisation de mélanges de gaz en analyse » impliquant 2 experts du LCSQA) la participation aux groupes d’expertise européens (AQUILA sur le plan technique et FAIRMODE sur le plan de la modélisation) mandatés par la Commission Européenne, impliquant 5 experts du LCSQA. Ces travaux vont dans la logique de convergence des approches métrologiques et par modélisation souhaitée par la Commission Européenne pour la surveillance de la qualité de l’air et dans le cadre du nouveau texte sorti fin août amendant les 2 Directives « qualité de l’air », la participation aux échanges avec la Commission Européenne (ex : Contentieux en cours sur les PM10 et probable pour le NO2, transposition des directives…), la mise en application effective (ou par anticipation) des exigences ou recommandations découlant des points précédents, associées à l’arrêté du 21/10/11 et à la lettre annuelle de cadrage du MEDDE, etc …), se traduisant par : l’apport d’un appui technique pour l’élaboration des recommandations nationales pour le dispositif national (note de cadrage, guide méthodologique…) et des propositions de résolutions faites dans le cadre des Commissions de Suivi, la vérification de leur application effective, au travers des actions de contrôle sur le terrain que les experts des équipes du LCSQA effectuent en audit chez les AASQA (5 audits en 2015 : Atmo Nord‐Pas de Calais, Atmo Picardie, AIRPARIF, Air Lorraine, AIRAQ), Tous ces travaux s’effectuent en collaboration avec les acteurs du dispositif national de surveillance (MEDDE, LCSQA, AASQA), notamment dans le cadre des études menées par le LCSQA et de ses missions de coordination. L’ensemble des actions d’appui à la surveillance, à la planification et aux politiques territoriales est décrit sur le site du LCSQA (http://pro-lcsqa2.lcsqa.org/fr/) et permettent notamment la mise à jour régulière du référentiel métier applicable par les AASQA pour surveiller la qualité de l'air en France.
Mercredi 9 janvier 2013
Rapport
Note : Suivi de la composition chimique journalière des PM2.5 et PM10 - station Petit Quevilly d’Air Normand (octobre 2010 - octobre 2011)
La présente étude, réalisée en partenariat avec Air Normand et le Laboratoire des Sciences du Climat et de l’Environnement (LSCE), a été initiée en 2010, avec pour principal objectif l’élaboration d’une base de données détaillée permettant la réalisation d’exercices de comparaisons mesures/modèles sur le long terme au niveau d’un site de fond urbain du territoire national. Elle est basée sur la caractérisation chimique d’échantillons journaliers de PM2.5 et PM10 prélevés en continu sur la station Petit Quevilly de l’agglomération Rouennaise. Un premier rapport d’étape, relatif aux résultats obtenus pour la période comprise entre avril et septembre 2010, est disponible sur le site web du LCSQA[1]. L’analyse de cette période estivale, peu propice au développement d’épisodes de pollution particulaires, a permis de confirmer la tendance des modèles prévisionnistes opérationnels (dans le cas présent : modèle CHIMERE utilisé au sein du système PREV’AIR, www.prevair.org) à la sous-estimation de la fraction organique, partiellement compensée par la surestimation globale des espèces inorganiques secondaires au sein des particules fines. Cette première analyse semblait également indiquer une surestimation de la fraction grossière par le modèle au niveau du site étudié. La présente note vise à présenter la base de données disponible à la fin de l’année 2012. En accord avec Air Normand, les prélèvements d’échantillons journaliers se poursuivront a minima jusqu’au printemps 2013. Néanmoins, en raison du coût et du caractère chronophage de l’analyse différée systématique de filtres journaliers ainsi que de la survenue de problèmes techniques sur les chaînes analytiques au dernier trimestre 2011 et premier trimestre 2012, seuls les filtres prélevés jusqu’au mois octobre 2011 ont pu être analysés à ce jour. Par ailleurs, la base de données correspondante n’ayant été validée qu’au cours de l’été 2012, il n’est pas possible de présenter ici des résultats de comparaisons mesures/modèles supplémentaires par rapport à ceux réalisés précédemment[1]. En revanche, l’analyse de quelques traceurs organiques et métalliques non-envisagés initialement a d’ores et déjà permis d’appliquer un modèle statistique (de type PMF, pour « Positive Matrix Factorization ») visant à identifier et quantifier les principales sources responsables des niveaux de concentrations de PM10 enregistrés entre octobre 2010 et octobre 2011. [1]Caractérisation chimique des particules: comparaison modèle/mesure (B. Bessagnet, F. Meleux, O. Favez et L. Chiappini). Ref. INERIS: DRC-10-111579-01718A.
Jeudi 11 février 2010
Rapport
Evaluation des zones géographiques touchées par les dépassements de valeurs limites
L’obligation de déclaration auprès de la Commission Européenne nécessite d’évaluer les zones géographiques touchées par des dépassements de valeurs limites et de quantifier les populations exposées à ces dépassements. En réponse à ces exigences, et dans un contexte contraint par l’urgence de fournir de telles évaluations à la Commission Européenne sous de brefs délais, une méthode d’évaluation fondée sur des données accessibles à l’ensemble des AASQA (y compris celles qui ne disposent pas d’outils de modélisation) a été développée pour les PM10 et décrite dans une note méthodologique. Elle s’organise par échelle d’espace et par typologie de site et décrit pour chaque cas la marche à suivre en fonction des moyens et informations disponibles. Pour aider à l’évaluation des zones de dépassement en situation de fond, des données d’estimation (concentrations moyennes annuelles, nombres de dépassements de seuil) produites sur la France à partir des simulations issues de CHIMERE et des données de la BDQA ont été mises à la disposition des AASQA sur le site du LCSQA. Cette méthodologie est contrainte par la disponibilité des données d’observation de PM10 permettant de qualifier la zone de représentativité d’une station donnée : campagnes de mesure, stations voisines, données d’émission, etc. Ainsi elle reste perfectible, en particulier en situation de proximité, sous réserve d’accéder à de nouvelles informations. Les travaux du LCSQA en 2010 auront pour objet de traiter cette question, avec la mise en place et la réalisation d’une campagne de mesure ad hoc et l’adaptation et l’amélioration de la méthodologie présentée dans ce document. De plus, il était prévu de travailler sur le NO2 en 2009 mais ces travaux n’ont pu être réalisés compte tenu de l’ampleur du travail sur les PM10 et à cause d’un manque de données de campagnes. L’approche sera donc étendue au NO2 et au benzène en 2010.
Mardi 21 août 2012
Rapport
Mesure des particules en suspension par absorption de rayonnement béta
1. Présentation des travaux L’objectif de cette étude est d’assurer le maintien de la méthode par absorption de rayonnement bêta en tant que technique usuelle en AASQA de mesure desparticules en suspension dans l’air ambiant. En 2011, seule la jauge bêta MP101MRST du fabricant français Environnement SA a bénéficié du statut de méthodeéquivalente en PM10 et est donc utilisée en AASQA. Le système de gestion centralisée des sources radioactives autorisé par l’Autorité de Sûreté Nucléaire en 2010 n’a donc concerné que cet appareil en 2011. Un accompagnement dans la mise en oeuvre de cet appareil au sein du dispositif français de surveillance de la qualité de l’air est proposé, au travers de la mise en place du système centralisée de gestion des sources radioactives (en lien avec l’ASN) ainsi que d’un programme d’Assurance Qualité/Contrôle Qualité (QA/QC)spécifique. Les améliorations technologiques apportées à cet appareil par le constructeur nécessitent d’être également étudiées. Les travaux effectués en 2011 ont porté sur 4 axes : Une veille technologique sur les nouveaux radiomètres Bêta arrivant sur le marché ; L’étude des modifications techniques apportées par Environnement SA sur le radiomètre MP101M-RST ; Le suivi du programme d’Assurance Qualité/Contrôle Qualité (QA/QC) via une assistance à l’utilisation en AASQA des radiomètres Bêta et la participation à une intercomparaison nationale ; Le suivi du système centralisé de gestion des sources radioactives pour les radiomètres bêta utilisés par les AASQA. 2. Principaux résultats obtenus Plusieurs modèles de jauges radiométriques sont apparues sur le marché européen ces dernières années. Une description du principe de fonctionnement etune analyse technique du modèle 5014i/5030i de la société américaine Thermo Scientific et des modèles Swam 5A Dual Channel et PBL Mixing de la sociétéitalienne FAI Instruements sont présentées dans ce rapport et montrent que ces appareils sont prometteurs. Notamment l’appareil italien, Swam 5A Dual Channel,permet dans sa version la plus sophistiquée d’effectuer une mesure automatique de la concentration et du nombre de particules de 2 fractions granulométriques différentesassociables à une mesure gravimétrique manuelle. L’appareil américain, 50140i, permet quant à lui d’effectuer une mesure automatique quasi-instantanée avec une couverture temporelle d’échantillonnage proche de 100%.Ces appareils sont reconnus comme « conforme » aux réglementations nationales (américaine, canadienne ou italienne) en vigueur pour le contrôle automatique des particules dans l’air ambiant (PM10 et/ou PM2.5). Cependant, pour que ces appareils puissent être utilisés par les AASQA, il reste aux constructeurs ou distributeurs respectifsà accomplir la démarche auprès de l’ASN de demande d’autorisation de commercialisation sur le sol français. Les études d’intercomparaison menées chez le constructeur Environnement SA ou par le LCSQA-EMD sur le site de Douai-Dorignies ont montré que pour la mesure des PM10,l’utilisation d’une source 14C à 1,84 MBq au lieu de la source traditionnelleà 3,66 MBq ne modifie pas de manière flagrante les caractéristiques de mesure de l’appareil par absorption de rayonnements Bêta MP101M-RST. Pour les deux études, une légère minoration est à noter mais elle reste dans le domaine de l’incertitude de mesure : ainsi, une concentration de 50 μg/m3mesurée sur une jauge MP101M équipée de l’ancienne source équivaudrait à une concentration de 48 μg/m3 sur une jauge équipée de la nouvelle source. Le présent rapport inclut un chapitre destiné à fournir une aide aux utilisateurs des différentes générations de radiomètres Bêta MP101M d’Environnement SA se trouvantdans les AASQA. Ce guide a été construit sous la forme d’un protocole d’assurance et de contrôle qualité des mesures en routine, à partir des expériences de chacune des AASQA, rencontrées au cours de la journée d'échange organisée en 2010 ou des journées techniques des AASQA qui ont lieu chaque année et à partir des échanges réalisés par le LCSQA avec le constructeur. Ce guide devra être remis à jour régulièrement et toutes les remarques et propositions de corrections sont lesbienvenues et peuvent être adressées directement au LCSQA-EMD. Depuis avril 2010, le LCSQA-EMD est autorisé par l’Autorité de Sûreté Nucléaire à gérer de manière centralisée les sources radioactives 14C utilisées en AASQA dans les jauges radiométriques. En 2011, l’ASN a réalisé un audit de ce système centralisé dont les conclusions ont été satisfaisantes. Les axes d’amélioration qui seront à traiter en 2012 concernent la formation en radioprotection du personnel AASQA, les échanges d’informations entre la PCR nationale et les référents techniques AASQA et l’étude de l’augmentation du volume d’activité maximale.
Vendredi 10 février 2017
Rapport
Conformité technique des appareils de mesure pour la surveillance des polluants réglementaires – bilan 2016
  Le LCSQA a un rôle d’expertise dans le processus de vérification de la conformité technique des appareils utilisés par les AASQA pour la surveillance réglementaire de la qualité de l’air. Suite à l’étude du dossier technique remis par le porteur de la demande (constructeur ou distributeur), l’avis technique émis par le LCSQA et examiné par la Commission de Suivi concernée permet au MEDDE d’entériner ou non la conformité technique des appareillages expertisés. S’agissant de la mesure réglementaire de la concentration massique des PM10 et PM2.5, ont été étudiés en 2016 les dossiers des appareils suivants : l’analyseur automatique modèle FIDAS 200 de la société PALAS (représentée par la société ADDAIR), l’analyseur automatique modèle MP101M nouvelle version modifiée de la société Environnement SA, le préleveur à bas débit modèle PNS-18T de la société DERENDA (représentée par la société ECOMESURE). Concernant la mesure réglementaire de la concentration massique en polluants gazeux, ont été étudiés en 2016 les dossiers des appareils suivants : l’analyseur automatique d’ozone modèle O3 42e de la société Environnement SA, l’analyseur automatique de dioxyde de soufre modèle AF 22e de la société Environnement SA, l’analyseur automatique de monoxyde de carbone modèle CO 12e de la société Environnement SA, l’analyseur automatique de dioxyde d’azote modèle T500U de la société TAPI (représentée par la société ENVICONTROL).
Jeudi 15 mars 2012
Rapport
Intercomparaisons des stations de mesures (4/4) : Intercomparaison européenne PM10 avec TEOM FDMS
Un essai européen d’intercomparaison monopolluant portant sur la mesure de particules en continu a été réalisé en septembre et octobre 2010 sur la station fixe de Creil. Il a réuni 4 participants : Atmo-Lorraine Nord (France) Atmo Auvergne (France) AEAT (Grande-Bretagne) VMM (Belgique) constituant un parc de 6 analyseurs gravimétriques TEOM avec module FDMS (type 8500) dont un équipé de membrane et sécheur ancienne génération dit type B et les cinq autres avec le type C, dernière version en vigueur. Pour la réalisation de l’exercice, un système de dopage de particules développé au préalable par le LCSQA/INERIS en collaboration avec LNIndustries et permettant une distribution homogène a été mis en œuvre. La génération de particules est assurée par une combustion incomplète de propane. L’estimation de l’incertitude globale de mesure (ICR) du groupe d’analyseurs TEOM avec modules FDMS équipés de tête PM10, a été estimée à 35% dans les conditions de dopageà la valeur limite journalière, et s’explique par une dispersion importante des données. Il en ressort que, dans ces conditions particulières, la qualité des mesures ne respecte pas les exigences de la Directive européenne en terme d’intervalle de confiance (25 %) à la valeur limite journalière. Par contre, cette même incertitude, estimée sur des mesures effectuées dans l’air ambiant sans dopage et après élimination de 2 appareils au fonctionnement incertain, est alors de 20 % et respecte l’objectif de qualité de la mesure recommandé par la Directive Européenne. Pour ce qui est des mesures obtenues avec dopage de l’air ambiant, le résultat obtenu est décevant et pourrait vraisemblablement être amélioré par un allongement de la durée de chaque palier de dopage (8 h minimum), ce qui est pour le moment inenvisageable avec le générateur de particules actuel. En effet, les TEOM FDMS sont conçues pour fournir une moyenne horaire de la concentration, la durée de nos dopages actuels (2 à 3 h maximum) et un traitement des données quart-horaires ne sont adaptés à ce type d’analyseur. Dans cet objectif, des tests complémentaires d’autres systèmes de génération (sels, particules calibrées,…) seront proposés en tests de faisabilité courant 2011 En parallèle, le générateur actuel, basé sur une combustion, sera vérifié puis intégré dans un boitier de protection par  LNIndustries dans le but d’améliorer la stabilité et la répétabilité de la génération de particules. Des essais visant à qualifier ce nouveau conditionnement auront lieu courant 2011.
Mercredi 22 mai 2013
Rapport
Suivi et optimisation de l'utilisation des TEOM-FDMS - Bilan des campagnes 2011-2012 de suivi d’équivalence du TEOM-FDMS en PM10
En réponse à l’accroissement des exigences européennes en matière de contrôle qualité des mesures automatiques de PM (se matérialisant par un projet de norme, actuellement au stade de spécification technique : TS 16450), le LCSQA/INERIS a mis en oeuvre en 2011-2012 un programme de suivi d’équivalence des mesures de concentrations journalières de PM10 par TEOM-FDMS. Cette étude a été rendue possible par la participation active des AASQA (Air Lorraine, Air PACA, AIRPARIF et Atmo NPdC), ayant contribué à assurer la disponibilité de sites appartenant au dispositif « réglementaire », la réalisation des mesures automatiques selon leurs protocoles habituels, et/ou le prélèvement des filtres selon les modalités de la norme NF EN 12341.Cette étude consiste en la réalisation d’exercices de comparaison entre les moyennes horaires obtenues par TEOM-FDMS selon les conditions de mesure au sein du dispositif national et les mesures manuelles (gravimétriques) constituant la méthode de référence définie par la Directive 2008/50/CE. Les campagnes ont été réalisées en respectant autant que possible les préconisations de la TS 16450 sur cinq sites de différentes typologies, localisés sur la moitié Nord(-Est) et le quart Sud-Est de la France, i.e. sur des territoires fréquemment soumis à des dépassements de valeurs limites fixées pour les PM10. Les mesures automatiques réalisées par TEOM-FDMS ont été comparées aux mesures de référence, selon la dernière version (v2.9) du logiciel de traitement de données élaboré par le RIVM et recommandé par la Commission européenne. En considérant l’ensemble de la série de données, la régression linéaire orthogonale obtenue indique une pente de 0,96 et une ordonnée à l’origine de 2,5. Compte tenu des incertitudes relativement faibles, associées à ces deux valeurs, elles sont à considérer comme significativement différentes de 1 et 0. Ainsi, une correction systématique des résultats obtenus par TEOM-FDMS pourrait permettre une amélioration globale des exercices de comparaison avec la méthode de référence. Néanmoins, ce type de correction engendrerait une augmentation de l’incertitude relative élargie (13,8% au lieu de 13,0% sans correction). De ce fait, et comme préconisé par la TS 16450, il est jugé ici inadéquat d’appliquer une fonction de correction aux mesures par TEOM-FDMS. Par ailleurs, l’incertitude obtenue lors de ces tests pour les mesures automatiques par TEOM-FDMS se situe dans une gamme (de 10 à 15%) pour laquelle la TS 16450 préconise, en l’état, la réalisation du suivi d’équivalence sur un minimum de 3 sites représentatifs des différentes conditions d’utilisation au sein du dispositif. Au vu de l’avancement du projet de norme (nécessitant des travaux de validation réalisés dans le cadre d’un appel d’offre lancé au premier trimestre 2013 ainsi qu’une nouvelle phase de rédaction puis de soumission au Etats Membres), la publication de cette norme n’est pas à prévoir avant 2017 et le caractère contraignant de sa mise en oeuvre avant 2018. Néanmoins, les difficultés d’utilisation rencontrées par les AASQA pour les différents types d’analyseurs de PM incitent au renforcement d’un programme pérenne de suivi d’équivalence cohérent à l’échelle nationale, incluant également les PM2.5, ainsi que l’application de guides méthodologiques nationaux répondant aux exigences européennes en matière de maintenance des analyseurs et de contrôle qualité des données.
Mardi 22 février 2011
Constituant
PM10